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Abstract
Background: Schizophrenia spectrum disorders (SSDs) are chronic conditions, but the severity of symptomatic experiences
and functional impairments vacillate over the course of illness. Developing unobtrusive remote monitoring systems to detect
early warning signs of impending symptomatic relapses would allow clinicians to intervene before the patient’s condition worsens.
Objective: In this study, we aim to create the first models, exclusively using passive sensing data from a smartphone, to predict
behavioral anomalies that could indicate early warning signs of a psychotic relapse.
Methods: Data used to train and test the models were collected during the CrossCheck study. Hourly features derived from
smartphone passive sensing data were extracted from 60 patients with SSDs (42 nonrelapse and 18 relapse >1 time throughout
the study) and used to train models and test performance. We trained 2 types of encoder-decoder neural network models and a
clustering-based local outlier factor model to predict behavioral anomalies that occurred within the 30-day period before a
participant's date of relapse (the near relapse period). Models were trained to recreate participant behavior on days of relative
health (DRH, outside of the near relapse period), following which a threshold to the recreation error was applied to predict
anomalies. The neural network model architecture and the percentage of relapse participant data used to train all models were
varied.
Results: A total of 20,137 days of collected data were analyzed, with 726 days of data (0.037%) within any 30-day near relapse
period. The best performing model used a fully connected neural network autoencoder architecture and achieved a median
sensitivity of 0.25 (IQR 0.15-1.00) and specificity of 0.88 (IQR 0.14-0.96; a median 108% increase in behavioral anomalies near
relapse). We conducted a post hoc analysis using the best performing model to identify behavioral features that had a
medium-to-large effect (Cohen d>0.5) in distinguishing anomalies near relapse from DRH among 4 participants who relapsed
multiple times throughout the study. Qualitative validation using clinical notes collected during the original CrossCheck study
showed that the identified features from our analysis were presented to clinicians during relapse events.
Conclusions: Our proposed method predicted a higher rate of anomalies in patients with SSDs within the 30-day near relapse
period and can be used to uncover individual-level behaviors that change before relapse. This approach will enable technologists
and clinicians to build unobtrusive digital mental health tools that can predict incipient relapse in SSDs.
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Introduction
Background
Schizophrenia spectrum disorders (SSDs) are complex chronic
conditions characterized by a diverse set of symptoms that
present themselves heterogeneously throughout the affected
population. Symptoms are typically categorized into 2 groups:
positive symptoms, which are an exaggeration of normal
function (eg, hallucinations, disorganized speech or thought)
and negative symptoms, described as a loss of normal function
(eg, lack of expressiveness, apathy, and asociality) [1]. Symptom
exacerbation in SSDs leads to a psychotic relapse. Relapse has
serious potential consequences, jeopardizing many aspects of
patients’ lives, including personal relationships and employment,
with an increased risk of patients causing harm to themselves
or others [2]. Previous research has estimated that the annual
direct medical cost of schizophrenia amounts to US $37.7 billion
within the United States, with an even larger indirect cost (US
$117.3 billion) [3]. Early detection of relapse could inform
time-sensitive clinical efforts that may reduce the severity of
relapses or prevent their occurrence altogether.

The heterogeneity of symptoms and the timing of symptom
exacerbation make detecting early warning signs of relapse
difficult. Relapse symptoms, unlike common first-episode
psychosis symptoms, can appear abruptly [2]. In-depth
interviews with patients with SSDs describing their prerelapse
symptoms show that symptom manifestation is extremely
idiosyncratic but often consistent within individuals. Each
individual may have their own unique relapse signature, and
identifying this signature could be the most effective manner
of detecting incipient relapse [4]. Traditional measures of relapse
come from clinician-administered rating scales that attempt to
quantify a patient’s current experience with an SSD [5,6].
However, it is often unlikely that patients present themselves
to a clinician when their symptoms begin to re-emerge or
worsen, particularly in an illness characterized by cognitive
disorganization, loss of insight, and inconsistent treatment
delivery systems where it can be difficult to access care [7]. To
prevent symptom exacerbation, tools need to be developed that
are able to detect early warning signs of relapse outside of the
clinic.

Over the past decade, improvements in sensing technologies
within smartphones, wearables, and other devices have created
new opportunities for remote measurement of mental health
symptoms [8,9]. Behavioral data collected with passive sensors
from smartphones offer unobtrusive methods to measure
trajectories of mental health and mental illness [10-13].
Smartphones can track a diverse set of behaviors and are owned
and utilized by most individuals with SSDs [14,15].

The CrossCheck system was the first smartphone-based tool
designed to collect passive sensing data as a method of tracking

the symptoms of SSDs. The system combines passive sensing
with triweekly self-reported survey measures [16]. Using
CrossCheck, researchers were able to predict patient
self-reported ecological momentary assessments (EMAs) from
passive sensing data and combine both the passive sensing and
self-reported data to predict clinician-administered Brief
Psychiatric Rating Scale (BPRS) scores [17,18]. In addition,
researchers were able to detect significant changes in patient
smartphone social behavior during the 30 days preceding relapse
[19]. Although these analyses provide a foundation for
identifying symptom changes that contribute to relapse, it is an
open question whether we can predict specific time points of
symptom exacerbation that show a clear relapse signature.

Relapse is a rare event, and lack of available data near relapse
can make prediction problematic [20]. Anomaly detection is a
branch of data mining specifically for the prediction of peculiar,
infrequent events [21,22]. Traditional approaches for anomaly
detection within time series involve forecasting and use
statistical measures based on cumulative sums, moving averages,
and regression models that rely on predicting changes in the
underlying distribution of the time series [22]. Forecasting
human behavior is an extremely difficult problem, and
behavioral data from patients with schizophrenia do not
traditionally follow the circadian rhythms seen within a healthy
population [23,24]. Algorithms designed to learn complex
features within time series data are likely to have more success
in finding anomalies and detecting behaviors associated with
relapse.

More novel approaches to time series anomaly detection use
encoder-decoder neural network models to identify anomalies
in multivariate time series data. These algorithms have had
success in learning complex features, specifically in highly
irregular sensing data [25-27]. Unlike statistical approaches,
neural networks do not require assumptions about the underlying
distribution of the data and are often ideal compared with
classical machine learning techniques because they can provide
accurate predictions without the need for complex feature
engineering. However, there is a tradeoff. It can be difficult to
interpret the reasoning behind why neural networks make
specific predictions, leading to the common description that
neural networks are black box models. In medicine, specifically,
interpretability is important because clinicians need to justify
the risk of using new approaches; thus, it is challenging to
introduce neural network–based decision making into the clinical
workflow [28]. Machine learning researchers focused on model
interpretability have offered approaches to analyze models post
hoc, after model training, to uncover the relationships between
the input features to the network and the network prediction
[29]. To successfully implement a neural network–based
anomaly detection system within behavioral health, one needs
to not only show good results in detection but also provide a
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process for uncovering the underlying behaviors that lead to an
anomaly and provide a clinical translation for those behaviors.

Related Work
Researchers have begun to utilize anomaly detection to predict
early warning sides of psychosis. A pilot study using a
combination of mobile sensing features and self-reported survey
responses was able to identify an increase in anomalies within
2 weeks of relapse in a small patient population [30]. Another
recent study utilized retrospective features extracted from
Facebook to create a classifier for detecting the 1-month period
before relapse and then analyzed the behaviors that were
significantly different within this period [31]. Developing an
algorithm to predict specific days of symptom exacerbation
before relapse using exclusively passive sensing data could
provide clinicians an unobtrusive method to measure SSD
symptoms without the need for patient self-reporting.

Contributions
This study makes the following contributions:

1. We created a variety of encoder-decoder neural
network–based anomaly detection models to predict early
warning signs of psychotic relapse using passive sensing
data collected from a smartphone. To the best of our
knowledge, these are the first models designed to predict
early warning signs of relapse using exclusively passive
sensing data.

2. We provided a post hoc analysis for clinical interpretation
of the detected anomalies within the context of SSDs and
demonstrated that our algorithm can detect
participant-specific relapse signatures.

3. We analyzed how variations in participant data can change
model performance to provide guidance for future
researchers in digital mental health for model and study
design.

Methods
CrossCheck System and Study
The CrossCheck system was an Android app combined with a
cloud-based data collection and storage platform. The app
continuously collected users' passive sensing data and prompted
participants every 2 to 3 days to self-report EMAs to track both
positive and negative symptoms of SSDs [17,32]. EMAs were
not utilized in our anomaly detection system owing to low
completion rates across relapse participants. Table 1 provides
an overview of the raw passive sensing data collected using
CrossCheck. Sensors also collected environmental data,
including ambient sound and light. The ambient sound was
utilized by the app to classify when conversations occurred near
the participant, but the raw sound and light data were not used
in this research. Refer to our previous work for more specific
information about the data collected during this study [16,17].

Table 1. Summary of passive sensing behavioral data collected throughout the study.

Derived hourly featuresDescriptionBehavior

Mean acceleration over the hour3-axis acceleration data were collected from a smartphone, sampled from
50-100 Hz. Previous CrossCheck studies utilized the Android activity
recognition APIa, which classifies activity data as follows: on bicycle,
still, in vehicle, tilting, or unknown. In this study, we chose to use raw
acceleration features to make our anomaly detection system independent
of a specific activity recognition API platform

Acceleration

Number of unique apps opened within an hourCrossCheck recorded apps running on a user’s smartphone every 15 minApp use

Number and duration of incoming, outgoing, missed,
rejected, and blocked calls

Phone calls can indicate social interaction and communication. We
tracked when incoming, outgoing, missed, rejected, and blocked calls
occurred

Call

Number and duration of conversationsPrevious studies have investigated the link between conversations, human
voice, and mental health [12,33,34]. We detected human voices and
conversational episodes using algorithms from our previous work [35]

Conversation

Time in primary, secondary, and all other locations as
well as total distance travelled in the hour

Previous research has shown that location can be associated with mental
health [12,13,36]. We tracked location information from users through
their smartphones

Location

Number of times the phone was used as well as the
duration of use

The amount of time users spend on their phones can be tracked to learn
normal daily behaviors. The time users’ screens were on versus off was
recorded

Screen activity

Sleep duration, onset. and wake time. As we estimated
only the longest sleep episode per day, this is techni-
cally a daily feature. We replicated these features
across all hours within a single day

On each day, the sleep duration, onset, and wake time were detected.
These calculations occurred using a combination of information based
upon users' screen time, physical activity, ambient sound, and light
[12,37]

Sleep

Number of received, sent, drafted, outbox, failed to
send, and queued messages

Text messages are another indicator of social interaction. We tracked
when texts were received, sent, drafted, left in a user's outbox, failed to
send, and were queued for sending

Text

aAPI: application programming interface.
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The CrossCheck study was a randomized controlled trial (RCT)
aimed at testing the efficacy of using passive sensing and
self-reported data to identify digital indicators of relapse. The
participants enrolled were randomized either into a smartphone
arm for passive sensing data collection or into a control arm to
receive treatment as usual. In this work, because our goal was
to predict early warning signs of relapse from collected passive
sensing data, we focused exclusively on the smartphone arm.
Participants enrolled in the study were given an Android
smartphone for 12 months and instructed to carry the device
with them and complete the EMA. Trained clinical assessors
met with participants to conduct a baseline assessment of
symptoms and functioning. Clinical assessors also conducted
follow-up assessments with participants during months 3, 6, 9,
and 12 of the study to administer the 7-item BPRS, which
measures psychiatric symptoms associated with SSDs [6,16].
Participants’electronic medical records (EMRs) were also made
available to the clinical assessors. The following events, either
reported during assessment or recorded within the EMR, were
designated as relapse: psychiatric hospitalization, a significant
increase in psychiatric care (including more intensive or frequent
services, increased medication dosage, or additional medication
prescribed) coupled with an increase of 25% from the baseline
total BPRS score, suicidal or homicidal ideation with clinical
relevance, self-injury, or violent behavior resulting in harm to
another person or property [19]. The date of relapse, any notes
surrounding the relapse event, and the reason for designating
the event as a relapse were recorded. When corroborating
evidence surrounding the relapse was not available within the
EMR, clinicians worked with participants during the assessments
to gain more information regarding the relapse event.

Relapse is an acute event, but when the early warning signs of
relapse begin to surface is an open question. Consistent with
previous research on early warning signs of relapse, we defined
the 30-day period before relapse as the 30-day near relapse
period (NR30), and all data outside of this period were
considered days of relative health (DRH) [19,31,38].

Study Protocol
The CrossCheck study was approved by the Committee for
Protection of Human Subjects at the Dartmouth College and
the Institutional Review Board of the Northwell Health System.
The study was registered as a clinical trial (NCT01952041).

Participants
Participants were recruited into the RCT from several treatment
programs at a psychiatric hospital in New York. Participants
were recruited through flyers posted at the study site with the
research coordinator’s phone number. In addition, researchers
reviewed the hospital’s EMRs to identify potential participants.
A potential participant’s clinician was contacted by the
investigative team, and after describing the study to the patient,
clinicians referred patients interested in the study to the research
team.

Eligible participants met the following inclusion criteria: (1) a
chart diagnosis of schizophrenia, schizoaffective disorder, or
psychosis not otherwise specified, (2) 18 years of age, and (3)
an inpatient psychiatric hospitalization, daytime psychiatric

hospitalization, outpatient crisis management, or short-term
psychiatric hospital emergency room visit within 12 months
before beginning the study. Individuals were excluded if they
had the following: (1) hearing, vision, or motor impairment that
would impede smartphone usage (determined using a
smartphone demonstration during screening), (2) a below sixth
grade reading level (determined using the Wide Range
Achievement Test–4th Edition), and (3) unable to provide
informed consent (using a competency screener) [16,39].

A total of 1367 individuals were initially assessed for eligibility
and 149 were enrolled in the study. Eligible individuals who
did not enroll were no longer receiving care at the hospital
(n=682), failed to meet the diagnostic criteria (n=131), did not
want to participate (n=129), or did not meet the severity criteria
(n=108). Of the 149 individuals enrolled, 62 were randomized
into the smartphone arm of the study [19]. Participants included
in this work (n=60) were required to have had at least 10 DRHs
collected by the smartphone app.

Feature Extraction and Data Cleaning
An advantage of using neural networks for machine learning is
that they have the ability to learn intricate features from raw
data [40]. We sought to create features for our learning algorithm
that were close to the raw data to exploit this fact. Hourly
features were created from the raw sensor data. A summary of
the hourly features used can be found in Table 1. In addition to
the passive sensing features, we included the day of the week
and the hour of the day as features in our model. The few
features that require more complex calculations are described
below.

Android phones track acceleration within a 3D x, y, and z
coordinate system. This produces 3 values for every acceleration
reading, namely a=(ax, ay, az). We computed the mean hourly
acceleration by taking the vector norm of each a within a
specific hour and averaging over the values.

We also tracked the longitude and latitude locations over time
for each participant. The locations for each participant were
clustered using the density-based spatial clustering of
applications with noise (DBSCAN) algorithm, implemented in
the scikit-learn library [41,42]. DBSCAN clusters samples of
high density together, requires a minimum number of samples
per cluster, and requires a maximum distance, ε, between points
to be specified as hyperparameters. We required a minimum of
10 samples per cluster and set ε=1 km. For each participant,
the 2 majority clusters were tagged as the participant's primary
and secondary locations, and all other data points were grouped
together into a third cluster. Finally, we calculated the distance
between each pair of longitude and latitude coordinates using
the Haversine formula [43]. We then summed the distances over
each hour.

Two types of missing data were identified. The first type of
missing data (type 1) occurred when there was a sensor reading
during an hour for one feature but there was no reading within
the same hour for another feature. We imputed missing data for
type 1 values with a “0,” indicating our belief that the
CrossCheck system was functioning during these hours, but an
individual did not partake in specific behaviors that the system
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records (eg, no texts were recorded within an hour). A second
type of missing data (type 2) was identified during hours where
all features were missing. We imputed features for the second
type of missing data utilizing the mean value of a given feature
for that hour. Location features (time spent in primary,
secondary, and other locations) were filled differently. We
assumed that the participant remained at their last recorded
location and filled the features accordingly.

We assumed that by using mean filling for type 2 missing
values, we would direct our anomaly detection models to focus
on finding anomalies within the actual passive sensing data.
That being said, missing values, specifically type 2 missing
values, could have an implication for function. For example, if
a participant stopped using their phone and the smartphone app,
missing values could be an indication of asocial behavior, which
may precede relapse. We added an additional feature to the
model that indicated the percentage of features filled within a
given hour. If this feature was <1, the hour was filled using the
type 1 missing data procedure, but if the feature was equal to
1, the hour was filled using the type 2 missing data procedure.

Encoder-Decoder Models
We developed multiple algorithms to detect early warning signs
of relapse using passive sensing data. Patients with SSDs are
known to not experience normal circadian rhythms that are
typically found within a healthy population [23,24]. Thus, we
chose to apply a neural network approach to this problem that
has been used for multivariate anomaly detection in irregular
sensor data [25-27]. Specifically, we created a fully connected
neural network autoencoder (FNN AD) model and a gated
recurrent unit sequence-to-sequence (GRU Seq2Seq) model
that learned to reconstruct an input time series [44]. A GRU
network was used over a vanilla recurrent neural network (RNN)
and other popular RNN architectures, such as a long short-term

memory (LSTM) network, as the GRUs counter the vanishing
gradient problem that occurs when training the vanilla RNNs,
and they converge faster during training than LSTM networks
[45]. After training the encoder-decoder models, our algorithm
learned participant-specific anomaly thresholds based on the
model reconstruction error. We discuss the architecture of the
encoder-decoder models in this section and describe the
thresholding procedure in the subsequent sections.

We considered each participant’s data to be a time series of
varying length L, X={x(1),…,x(L)}, where each x(i) is a
multivariate data point, x(i)∈Rm. In our case, each x(i) represented
a set of hourly features for a single participant. We created
subsequences of data of length l starting at each i, i={i,…,L-l+1}.
Note that a given data point, x(i), could be potentially included
within each of the 1,…,L subsequences. For the FNN AD model,
we let l=1, and for the GRU Seq2Seq model, we let l=24.

The models were constructed as follows. This is also detailed
in Figure 1. The FNN AD model comprised 2 fully connected
encoder and decoder layers that compressed an input
subsequence to a lower dimension and then recreated the initial
subsequence. For the GRU Seq2Seq model, we first input a
subsequence of data into a single encoding layer of a
bidirectional GRU with a specified hidden unit size. A
bidirectional layer was used for the encoder because previous
research has shown that bidirectional layers improve the results
over unidirectional layers [46]. The last cell in the encoding
layer outputs a prediction for the next timestep, x’(l+1), and
encodes hidden information from the entire sequence, h(l+1).
We then passed this information as inputs into a unidirectional
GRU decoder layer that reconstructed the subsequence in
reverse order: {x’(l),…,x’(1)}.
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Figure 1. Encoder-decoder neural network architectures. (a) the architecture for the fully connected neural network autoencoder (FNN AD) model.
(b) the architecture for the GRU sequence-to-sequence (GRU Seq2Seq) model.

Model Training Procedure
We utilized a similar data-splitting and cross-validation
procedure as described in previous work [25-27]. The data for
each participant were first split into equal length nonoverlapping
subsequences, and the subsequences were placed into 1 of 4
data sets. Defining NR30 as the 30-day near relapse period and
DRH as days of relative health (ie, all days not in NR30), the
data were split into the following:

1. A training data set, comprising only DRH, called HR. These
training data are utilized to train each model.

2. A cross-validation data set, comprising only DRH, called
HCV. These cross-validation data are utilized to validate the
ability of the models to reconstruct sequences of new data.

3. A cross-validation data set, comprising DRH and NR30,
called NCV. These cross-validation data are used to tune the
anomaly detection component of our algorithm as described
in the following section.

4. A test data set, comprising both DRH and NR30, called NT.
The test data set are used to report the metrics of the
anomaly detection algorithm described in the Results
section.

We also experimented with the percentage of relapse participant
data to include in each of these 4 data sets. Specifically, we
experimented with placing different percentages of DRH within
HR and HCV. We experimented with placing 0%, 20%, 40%,
60%, and 80% of relapse participants’ DRH into HR and HCV.
DRH for both relapse and nonrelapse participants were split
such that 80% of DRH were placed into HR and 20% into HCV.
Nonrelapse participant data were split entirely between HR and
HCV.

Monte Carlo cross-validation was used to examine the
robustness of the algorithm across different potential NCV and
NT. We stratified each Monte Carlo sample to place equal
amounts of NR30 data per participant within NCV and NT. The
Monte Carlo procedure was repeated over 100 iterations and
the median and IQR of the true-positive rate (TPR or sensitivity),
and false-positive rate (FPR) of the current Monte Carlo test
set NT were recorded.

Anomaly Detection System
We used the trained encoder-decoder models to reconstruct
HCV, NCV, and NT, producing H’CV, N’CV, and N’T. For a data
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point x(i) in each of these data sets and its reconstructed
counterpart x’(i), we calculated the absolute error of the data
points: e(i)=| x(i)- x’(i)|.

Within our algorithm, the full-time series was split into
subsequences of length l, and any point x(i) could appear in at
most l different subsequences. Thus, for a point x(i), there can
exist l different predictions, {x1’

(i),…,xl’
(i)}. We filtered our data

set to include only points that were predicted l times. The error
vectors for these data were considered to be normally
distributed, e(i)~N(µ,Σ), and the error between HCV and H’CV
was used to approximate (µ,Σ ) parameterizing the expected
error of our algorithm. We then calculated an anomaly score
s(i)∈R for error vectors between NCV, N’CV, and NT, N’T using
the Mahalanobis distance, which calculates the distance of a
point to a distribution as follows: s(i)=((e(i)-µ)T Σ-1(e(i)-µ))1/2 [47].

The average anomaly score for a single day was calculated from
the hourly scores, sd. The Mahalanobis distance from data in
NCV was used to optimize an anomaly threshold, τ, for each
participant over all sd for that participant. A day was tagged as
an anomaly if sd>τ or normal if sd≤τ.τ was chosen to maximize
the ratio between the TPR divided by the FPR, or TPR/FPR,
defining a true positive as an anomaly detected within NR30
and a false positive as an anomaly detected on a DRH.
Optimizing this ratio maximized the number of anomalies
detected during the NR30 when minimizing the number of
anomalies detected during DRH. This τ was applied to the
Mahalanobis distances from the held-out test sample, NT, and
the final results using the best τ for each participant's NT were
recorded.

Evaluation Metrics
We used the TPR/FPR ratio as an evaluation metric to rank
model performance. By maximizing this ratio, we subsequently
maximized the sensitivity and specificity of our models.
Sensitivity and specificity are metrics commonly used within
medicine to assess the strength of a diagnostic test [48]. The
sensitivity is equivalent to the TPR and the specificity is
equivalent to the true negative rate (or 1–FPR). Thus, by
maximizing the TPR/FPR, we found a model that maximized
both sensitivity and specificity.

Anomalies are rare events; thus, it is unlikely that every day
within NR30 would contain an anomaly. Clinically, we assumed
that an anomaly detection system for early warning signs of
relapse would be relevant as long as the anomalies were rare
(low sensitivity and high specificity), but increased
(TPR/FPR>1) within NR30. This increased signal could then
be used to find passive sensing features that distinguished
anomalies within NR30 from anomalies identified within DRH.

Baseline Model and Evaluation
We used a k-nearest neighbors local outlier factor (LOF) model
as a baseline comparison against our neural network models
[49]. The LOF model estimated the local density around each
data point using a k-nearest neighbor algorithm and then
compared the local density of a given data point with the local
density of its neighbors. If the point was in a substantially less
dense area, it had a higher calculated LOF. We initially fit an
LOF model for each relapse participant utilizing HR with the
number of neighbors equal to 10, and we incremented the
number of neighbors by 1 until the mean and SD of the LOF
scores under HCV converged. We could then utilize the approach
described above to calculate anomalies by considering the
distribution of LOF scores obtained under HCV and learning an
appropriate anomaly threshold for NCV. The LOF model was
trained and tested using scikit-learn [42].

Neural network models were created using TensorFlow and
Keras libraries [50,51]. Models were trained until the validation
loss from HCV converged. We used cross-validation for all neural
network models to determine the optimal hidden layer size
(between 10 and 50 units), the percentage of DRH from relapse
participant data to include within HR and HCV (between 0% and
80%), and the τ that maximized the TPR/FPR ratio on NCV
(between 0 and 20). For the LOF model, we also optimized the
number of neighbors utilized for the local density within each
relapse patient.

We applied 2 forms of regularization to train the neural
networks. For both the GRU Seq2Seq and the FNN AD models,
we used early stopping to terminate model training when the
reconstruction error from HCV increased. In addition, we applied
dropout (rate=0.2) and recurrent dropout (rate=0.2) to the GRU
Seq2Seq model. Dropout masks, or drops, inputs randomly
within the network, whereas recurrent dropout adds this mask
between the recurrent layers at each timestep [52]. This exposed
the trained network to different permutations of the training
data to prevent overfitting. Batch normalization was briefly
used during model creation, but we found that batch
normalization did not improve anomaly detection performance
and was not used to train the final iteration of the models.

Results
Data Overview
We collected a total of 20,137 days of mobile sensing data from
60 patients with SSDs. Relapse events were recorded for 18 of
60 participants (30%) during the 1-year study, totaling 726 days
of data collected within any NR30 data (0.037% of the total
days of data collected). Table 2 provides a summary of the data
collected from the relapse and nonrelapse groups.
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Table 2. Summarized data characteristics for relapse and nonrelapse participants (continuous characteristics listed by median [IQR]).

NonrelapseRelapseCharacteristics

4218Patients, n

40 (26-50)33 (23-47)Age at beginning of study (years), median (IQR)

17 (40)8 (44)Female, n (%)

295 (176-361)335 (285-346)Number of days of data collected per participant, median (IQR)

Missing hours of data (type 2), median (IQR)

1785 (660-2871)2309 (1333-2551)Number of hours

27.17 (7.72-52.50)25.73 (14.77-28.73)Percentage of total hours

Diagnosis, n (%)

17 (40)9 (50)Schizophrenia

18 (43)7 (39)Schizoaffective disorder

7 (17)2 (11)Psychosis NOSa

Assessment at baseline, median (IQR)

24 (21-29)29 (23-33)BPRSb (7-item) total

Lifetime hospitalizations, n (%)

30 (71)13 (72)1-5

8 (19)1 (6)6-10

3 (7)1 (6)11-15

0 (0)1 (6)16-20

1 (2)1 (6)>20

0 (0)1 (6)Missing or declined

Distribution of relapse events, n (%)

N/Ac14 (78)1 relapse event

N/A1 (5)2 relapse events

N/A3 (17)3 relapse events

aNOS: not otherwise specified.
bBPRS: Brief Psychiatric Rating Scale.
cN/A: not applicable.

Anomalies Increased Near Relapse
The highest performing cross-validation results for each model,
with hyperparameters, are shown in Table 3. All results are
listed using median (IQR) sensitivity and specificity. Across
all model architectures, the FNN AD model using 80% of the
data from DRH with 40 hidden units had the highest rank across
participants (9.28), achieving a median sensitivity of 0.25 (IQR
0.15-1.00) and specificity of 0.88 (IQR 0.14-0.96). LOF models

did not show predictive power (sensitivity 1.0 and specificity
0.0) and were not included in our results. Figure 2 shows the
resulting sensitivity and specificity achieved from models trained
on different percentages of DRH. Adding a larger percentage
of DRH to model training initially increased the sensitivity and
decreased the model specificity, but then decreased the
sensitivity and increased the specificity as more data were added.
Figure 2 shows that the anomaly rate increased before the NR30
period but then remained fairly constant among participants.

Table 3. Cross-validation results per model type within relapse participants listed by median (IQR).

Specificity, median (IQR)Sensitivity, median (IQR)Hidden unitsDays of relative health in train, %RankModel

0.88 (0.14-0.96)0.25 (0.15-1.00)40809.28FNN ADa

0.86 (0.24-0.90)0.29 (0.08-0.83)508012.72GRU Seq2Seqb

aFNN AD: fully connected neural network autoencoder.
bGRU Seq2Seq: gated recurrent unit sequence-to-sequence.
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Figure 2. Overall model results, the anomaly rate of the best performing model across the near relapse (NR30) period and in (a-c) split by the DRH
used in model training. In (a-c), the bar heights describe the median value of the metric listed on the y-axis across study participants and the error bars
show lower and upper quartile values (25% and 75% percentiles of the data). In (a) and (b), local outlier factor (LOF) models are not shown as they did
not hold predictive power. (a) Sensitivity, or true positive rate, of the models and (b) specificity, or true negative rate. (c) Median number of DRH used
to train each model from each study participant. (d) Average (blue line) and 95% CI (gray shading) anomaly rate across relapse participants beginning
35 days before relapse using the best performing model (fully connected neural network autoencoder, 80% of DRH in train, 40 hidden units). DRH:
days of relative health.

Anomaly Detection System Identified Specific Near
Relapse Behaviors
Previous research has shown that individuals often report
symptom exacerbation, which could be used to predict the onset
of relapse [4]. Identifying participant-specific behaviors that
are consistent during relapse would give clinicians a potential
signature to identify when a patient needs clinical support. A

total of 4 participants within our study relapsed multiple times.
We performed a post hoc analysis using our best-performing
algorithm across participants (FNN AD, 80% of DRH in train,
hidden unit size=40) to compare features on NR30 anomalous
days with DRH within multirelapse participants. We used Cohen
d to calculate the effect of continuous features on discriminating
an NR30 anomaly to any DRH and the OR for calculating
whether type 2 missing data appeared more frequently in NR30
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anomalies [53]. Figure 3 shows the distribution of the 5 features
with the largest effect per participant on differentiating detected

anomalies within NR30 from DRH.

Figure 3. The hourly features that had the greatest effect on differentiating identified anomalous days near relapse (NR30) from all DRH within the 4
multirelapse participants. We used the Cohen d to identify the 5 features that were the most differentiated. Each subfigure, (a-d), displays boxplots
comparing the distribution of these features on anomalous days within each NR30 period compared with all DRH. The center line in the boxplot is the
median value, the box limits are the IQR, and the whiskers are 1.5 x the IQR. Points outside of the whiskers are greater than or less than 1.5 x the IQR.
A lower IQR signifies that the median result is more generalizable. For example, in (a), we identified anomalies within 2 NR30 periods, described in
the figure as Near relapse 1 and Near relapse 2. The 2 left boxes on each plot show the distribution of the feature for anomalies detected within each of
these 2 NR30 periods and the right box shows the distribution of this feature on all DRH outside of the 2 NR30 periods. NR30: 30-day near relapse
period. DRH: days of relative health.

Notes surrounding each relapse, extracted from the participant’s
EMR or obtained during clinical visits, were compiled by a
team of trained clinical assessors. We used these notes as a
qualitative validation to understand whether the identified
features from our analysis were presented to clinicians. We now
briefly describe the results of each comparison for features that
were identified to have a large effect (Cohen d>0.8), medium
effect (0.5<Cohen d≤0.8), or the feature with the largest effect
if no features with a large or medium effect were identified [54].
The ORs indicated that type 2 missing data did not discriminate
anomalies within NR30 from DRH for multirelapse participants

(OR<1 for all multirelapse participants). The features are
described in detail in the Methods section.

Multirelapse Participant 1
We did not identify a feature with a large or medium effect for
this participant. The conversation duration had the largest effect
(Cohen d=0.47), which increased before relapse, as shown in
Figure 3. Clinical notes from the first relapse event indicate that
the participant was hospitalized because she was tired of hearing
voices, which suggested that her neighbors were constantly
talking about her. Notes from the second relapse did not describe
any participant behavior.
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Multirelapse Participant 2
The participant’s mean acceleration (Cohen d=1.23), sleep end
time (Cohen d=0.90), and sleep duration (Cohen d=0.84) had
a large effect. Figure 3 shows that the mean acceleration
decreased in all 3 NR30 periods for this participant, whereas
the sleep duration and end time increased. Clinical notes from
the first relapse identified that the participant had been feeling
ill, specifically that his “brain was shaking.” On the second
relapse, the participant stated that he felt like he “was going to
die,” and was feeling depressed. The clinician wrote that the
patient “has had difficulty sleeping.” Notes regarding the third
relapse indicate that the participant had been disorganized,
physically aggressive toward his mother, and was barely
sleeping.

Multirelapse Participant 3
The participant’s sleep start time (Cohen d=1.35), number of
smartphone screen unlocks (Cohen d=1.34), sleep end time
(Cohen d=0.96), duration of conversations (Cohen d=0.95), and
number of incoming calls (Cohen d=0.81) had a large effect.
Figure 3 shows abnormal behavior in the sleep start and end
times for all relapse periods, but is inconsistent in the direction
of how the behavior differs from the median value across each
relapse. The number of screen unlocks, incoming calls, and
duration of conversations increased in both relapse periods.
Notes regarding the first relapse did not identify any specific
behavioral changes. Clinical notes from the second relapse
identified that the participant had been spending his days
“making music and beats” and was sleeping less at night, but
had increased sleep during the day. The notes also identified
the participant as having auditory hallucinations.

Multirelapse Participant 4
One feature, the number of conversations, had a medium effect
(Cohen d=0.62) for this participant. Figure 3 shows that the
number of conversations increased during all 3 relapse periods.
Notes from the first relapse did not describe any specific
behavioral differences in the participant. Clinical notes from
the second relapse indicated that the participant presented herself
to outpatient psychiatry with “signs of catatonia” and that the
participant had mostly stopped speaking, although she had

occasional spontaneous speech. We were not able to obtain
notes regarding the third relapse event.

Anomalies Contained Fewer Hours of Type 2 Missing
Data
We found that type 2 missing data did not have an effect on
distinguishing anomalies within NR30 for the 4 multirelapse
participants. We wanted to examine this question more broadly
to determine how missing data influenced all detected anomalies.
We conducted a one-sided Mann-Whitney U test to test the
following hypothesis: predicted anomalies contain a smaller
number of type 2 hours filled compared with all other days.
Individual participant factors were controlled for using
participant-specific Mahalanobis distance thresholds for anomaly
designation. Anomalies had a median of 0 (IQR 0-6) hours of
data filled using the type 2 missing data procedure, and all other
days had a median of 2 (IQR 0-16) type 2 hours of data filled.
The one-sided test was significant (U=514,546; P<.001),
indicating that anomalous days were significantly less likely to
contain type 2 missing data.

Variations in Relapse Participant Data Affected the
Quality of Anomaly Detection
We analyzed the participant-level anomaly detection results to
determine how variations in data quality affect the
generalizability of our model. Table 4 summarizes the results
of using linear regression to assess the significance between the
sensitivity and the specificity of the highest performing model
(FNN AD, 80% of DRH in train, hidden unit size=40) and the
data quality parameters. All data quality parameters were
significant (P<.001). Increasing the number of days of raw data
and the percentage of days within NR30 increased the sensitivity
of the model (ß=.60, 95% CI 0.48 to 0.72; ß=.73, 95% CI 0.49
to 0.97) but decreased the specificity of the model (ß=−.69, 95%
CI −0.81 to −0.57; ß=−.71, 95% CI −0.95 to −0.47). Increasing
the number of days per NR30 period and the number of relapse
events decreased the sensitivity of the model (ß=−.43, 95% CI
−0.52 to −0.34; ß=−.82, 95% CI −1.02 to −0.62) but increased
the specificity of the model (ß=.33, 95% CI 0.23 to 0.43; ß=.87,
95% CI 0.67 to 1.07).

Table 4. Linear regression results between sensitivity and specificity and different data parameters.

SpecificitySensitivityParameters

P valueCoefficient βP valueCoefficient β

<.001−.69 (95% CI −0.81 to −0.57)<.001.60 (95% CI 0.48 to 0.72)Days of raw data

<.001.33 (95% CI 0.23 to 0.43)<.001−.43 (95% CI −0.52 to −0.34)Days per near relapse period

<.001−.71 (95% CI −0.95 to −0.47)<.001.73 (95% CI 0.49 to 0.97)Percentage of days near relapse

<.001.87 (95% CI 0.67 to 1.07)<.001−.82 (95% CI −1.02 to −0.62)Relapse events

>.99.00 (95% CI −0.04 to 0.04)>.99.00 (95% CI −0.04 to 0.04)Intercept

Discussion
Principal Findings
In this study, we created the first model, exclusively using
passive sensing data from a smartphone, to predict behavioral

anomalies that could indicate early warning signs of psychotic
relapse. Developing an anomaly detection system from
exclusively passive sensing data requires minimal effort for
data collection from the participant and could lead to more
objective and unobtrusive ways of monitoring symptoms of
SSDs. Our anomaly detection system achieved a median
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sensitivity of 0.25 (IQR 0.15-1.00) and specificity of 0.88 (IQR
0.14-0.96; a 108% increase in anomalies near relapse), indicating
that anomalies increased before relapse but were restricted to
specific days within the defined NR30 period. Once we
identified anomalous days within NR30, we demonstrated that
our methodology can be used to identify participant-specific
behavioral signatures that occur across multiple NR30. In the
future, anomaly detection models could be used to identify days
that contain these signatures and supervised learning approaches
could then be deployed to detect these signals as early warning
signs of relapse. Identifying patient-specific behaviors that
change exclusively before relapse could provide clinicians an
indicator to measure when patients are declining in health and
create time for early intervention.

Anomalies increased within NR30, but with low sensitivity.
We believe this low sensitivity could be owing to our choice of
an NR30 period or our decision to use the TPR/FPR ratio as a
validation metric for this work. We chose an NR30 period
because past research has shown that early warning signs of
relapse might begin to develop up to 1 month before the actual
relapse event [19,31,38]. Our low sensitivity indicated that only
specific days within this 30-day period were considered
anomalies, and training algorithms in the future to target these
specific days could increase sensitivity. Another approach to
increase sensitivity would be to shorten the number of days
included in the near relapse period. For example, previous work
using a combination of smartphone social behavior and
self-reported EMAs to detect anomalies before relapse identified
a 14-day near relapse period [30]. We observed an increased
anomaly rate 30 days before relapse (Figure 2), which remained
fairly constant; therefore, we did not further investigate
shortening the near relapse period. It is important to note that
the algorithm we used may result in a constant anomaly rate
during a near relapse period of any prespecified length as these
algorithms are trained to look specifically for behavioral
differences within these periods.

In addition, we used the TPR/FPR ratio for model selection
rather than directly optimizing for sensitivity or specificity.
Most machine learning algorithms use the area under the
receiver operating curve to assess the predictive power of a
model, which we did not feel was appropriate for our anomaly
detection algorithm. Anomaly detection, by definition, searches
for extremely rare events. To introduce this process into a
clinical workflow, we would need to strike a balance between
highlighting potential early warning signs of relapse without
overburdening the healthcare system with a high anomaly rate.
We felt this could be achieved using our modeling approach as
we showed an increase in anomalies before relapse without
sacrificing the specificity of our results.

To increase model sensitivity in this context, more clarity is
needed on what should constitute behaviors that can be used to
identify early warning signs of psychotic relapse. A process can
then be created where we first use anomaly detection to identify
candidate relapse signatures and then train supervised learning
algorithms to identify these signatures. This would, in turn, limit
the feature space to the behaviors per individual that were
differentiated before relapse. In addition, identifying these
specific signatures as a starting point for a positive signal would

allow us to clarify whether false positives were merely noise or
hold clinical significance. In this study, a relapse event was
indicated for most of our participants by either a psychiatric
hospitalization or a significant increase in symptoms as reported
by clinician-administered BPRS. It is possible that symptoms
were exacerbated on days outside of NR30, and our system
detected these days as anomalies. This symptom exacerbation
was not given clinical oversight; thus, we had no way to validate
whether these anomalies should be considered true positives.

Days that contained more hours of type 2 missing data, in which
no passive sensing data for the entire hour existed, were
significantly less likely to be tagged as anomalies. Our approach
to using mean filling for type 2 data was based on 2
assumptions: (1) that we would like to prioritize behavioral
features collected from passive sensors for anomaly detection
and (2) that it is possible that a large quantity of missing data
might be a sign of asocial behavior and we should also account
for missing data with an additional feature that tracks the amount
of data missing over an hour. Previous work on anomaly
detection with missing data has analyzed the effects of various
data filling methods on anomaly detection results. With the
assumption that imputed data points should not be detected as
anomalies, the work found that this assumption can hold true
if the imputed values are located in high-density regions of the
feature distribution [55]. In this work, anomalies were
significantly less likely to contain missing values (P<.001),
indicating that the Mahalanobis distance per individual was less
for imputed hours and anomalies were more likely to include
non–type 2 data points. With this first assumption in mind, it
is possible that the potential effect of missing data on relapse
was ignored. For example, the missing data feature did not
distinguish anomalies within NR30 in the 4 multirelapse
participants. More research needs to be conducted on how
different missing data imputation procedures can affect mental
health symptom prediction algorithms.

We observed that increasing the amount of relapse participant
data used for model training did not always increase the resulting
sensitivity and specificity. Figure 2 shows that our model
performance increased in sensitivity and decreased in specificity
when we increased the percentage of DRH from relapse patients
used in model training from 0% to 40%. We then observed a
reverse trend (decreased sensitivity, increased specificity) when
we increased the amount of DRH from 40% to 80%. This
demonstrates that as models learned participant-level behaviors,
there was a threshold for the amount of data required for model
training (approximately 135 days from data from Figure 2)
before a model could begin to distinguish anomalous behaviors
within NR30. We also found that our anomaly detection system
is sensitive to the quality of the relapse participant data. Table
4 demonstrates that increasing the total percentage of NR30
days increased the sensitivity (ß=.73), but not if this increased
the average number of days within NR30 (ß=−.43), and
increased the total number of relapse events (ß=−.82).
Subsequently, having a higher number of relapse events
increased (ß=.87) the specificity of the model, but not if this
increased the percentage of days within NR30 (ß=−.71), and
increased the number of days of raw data (ß=−.69). Taken
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together, our results depended on identifying homogeneous
behavioral signals that occurred exclusively in NR30.

Given the importance of finding homogeneity in the signal, we
examined whether we could uncover consistent signals in
participants that might indicate SSD symptom exacerbation. It
can be difficult to introduce neural network models within
clinical practice owing to their black box nature, even though
they can achieve higher performance than classical machine
learning models [28]. In our work, interpretability is critical
because clinicians need to develop an understanding and trust
of an algorithm's decision-making process. We utilized a post
hoc notion of interpretability to identify participant-specific
features that differed during NR30 anomalies [29]. We chose
the effect size, a metric traditionally used to measure the strength
of a treatment in an RCT, to identify the most differentiated
features within NR30 [54]. We identified features with a
medium to large effect (Cohen d>0.5) in 3 of 4 multirelapse
patients. The features we identified encompass different aspects
of social behavior, sleep, and physical activity.

We searched the literature to interpret the behavior changes that
we identified within NR30. Our previous work identified that
smartphone social behavior decreased across participants before
relapse [19]. We examined smartphone social behavior at the
individual level. Multirelapse participant 3 increased their
smartphone social behavior before relapse, but, from contextual
notes, we discovered that this participant experienced auditory
hallucinations, potentially explaining the increased conversation
duration detected by the smartphone as well as other increased
smartphone social behaviors found. Multirelapse participant
4’s number of conversations increased with a medium effect
(Cohen d=0.62), contrasting the physician’s notes, which stated
that the participant was barely speaking and potentially
catatonic. Figure 3 shows that the elevated conversation signal,
whether from the participant or the environment, was unique
to anomalies within each of the 3 NR30 periods.

In addition, we detected that changes in sleeping behavior had
a large effect on 2 participants and decreased acceleration had
a large effect on 1 participant. Previous research has shown that
patients with SSDs are at a significantly higher risk of
developing a sleep disorder or worsened sleep near relapse
[56,57]. Multirelapse participant 2’s detected sleep duration
increased before relapse. In addition, the participant’s
acceleration decreased. Social withdrawal and physical inactivity
are common symptoms of SSDs. These symptoms interfere
with functioning, potentially leading to relapse, and relapse can
produce aggression [58,59]. The symptoms identified were
consistent with the clinician’s explanation of the second relapse
event for this participant, which described changes in sleep and
aggressive behavior. Thus, the features that were most
differentiated are consistent with past research identifying early
warning signs of relapse.

It is important to note that although we found differentiated
features for each participant that were consistent with the notes
surrounding relapse, the changes detected by the passive sensors
were not always consistent with the changes described in the
clinical notes. For example, we found that participant 2’s sleep
increased before relapse, with a large effect, whereas the

clinician’s notes stated that sleep decreased. Similarly, for
participant 4, the number of conversations increased before
relapse with a medium effect, whereas the clinician’s notes
stated that the participant exhibited signs of catatonia. The
smartphone algorithms we used to detect conversation relied
on ambient sound to detect human voice and conversational
exchanges, but do not necessarily detect the voice of the
participant [34]. In addition, the sleep algorithm used detected
sleep based on a combination of phone usage, ambient light,
stationary behavior, and environmental silence, all features that
might occur when someone is still but not necessarily sleeping
[37]. When interpreting the result of a black box algorithm
clinically, we need to interpret the algorithm’s results in the
context of the technical capabilities of the passive sensing
system used before judging the outputs of the system literally.
Thus, although smartphones can find meaningful relapse
signatures, the interpretations of these signatures should be
corroborated with the patient and other qualitative information
to better understand the underlying behaviors that preceded
relapse.

Designing a Relapse Prediction System
We hope that this work moves researchers one step closer to
creating a clinical intervention system to predict early warning
signs of relapse that can be deployed within the clinical
workflow. We reviewed digital mental health and mobile health
(mHealth) literature to understand how such a system could be
deployed. The MONARCA system was created to help
individuals with bipolar disorder track disease symptom
trajectories using a combination of both passive sensor data and
self-assessment [10]. A field trial of the MONARCA system
demonstrated the difficulties in obtaining both patient and
clinician buy-in when forecasting mental health symptoms, as
patients were not convinced of the accuracy of the passive
sensing data and clinicians were unsure of steps to take if the
system forecasted symptom exacerbation [60]. Although the
possibility of a clinician having patient data at their fingertips
seems appealing, it is also a liability for clinicians if they have
24/7 monitoring capabilities and choose not to act when a patient
is potentially in danger [61]. One possible solution to this issue
is to introduce a clinical technology specialist into a patient’s
care team whose responsibility is to successfully introduce and
maintain technology-based services within the clinic [62]. It is
evident that there is a gap between technology intervention
creation and implementation.

Overall, acceptability will continue to play a large role in
implementing mHealth interventions. The PD_Manager mHealth
platform, a platform created to track symptoms of Parkinson's
disease using passive sensing, provides an example of an
mHealth tool where researchers specifically tested the
acceptability of the platform to patients and clinicians before
testing the effectiveness of the system [63]. To help increase
the acceptability of mHealth tools, digital mental health and
human computer interaction researchers are focused on solving
mHealth implementation hurdles using a user-centered design
framework, where technology is created and refined in an
iterative process that places the proposed interventions directly
in the hands of relevant stakeholders [64]. Creating the
technology behind a relapse prediction system is a small piece
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of the puzzle compared with the larger implementation
challenges that will be faced when deploying it.

Figure 4 presents an example framework for an SSD behavioral
monitoring and intervention system utilizing anomaly detection.
Many questions remain regarding implementing this system,
including the level of patient interaction with the system, how

and when detected anomalies are presented to the clinician or
other relevant parties, and a defined procedure that an individual
should take to intervene in care when anomalies are detected.
The implications of this work can only be truly justified when
a system for detecting early warning signs of psychotic relapse
has been deployed within the clinical workflow.

Figure 4. Example of an anomaly visualization and clinical intervention system. The dashed black lines in (a) each represent an hourly feature trajectory
from the anomaly detection system, as identified on the y-axis, during a 30-day near relapse period (NR30). The gray line on each plot is the Mahalanobis
distance, which can be interpreted as an anomaly score that increases as we are more likely to detect an anomaly. The 2 vertical thick black lines on
each plot are detected anomalies. (b) Example of how this information could be utilized by a clinician or other individuals designated by the patient to
intervene during symptom exacerbation. The system would be tuned to send alerts only when a patient is in crisis and not overburden the clinician and
the healthcare system.

Limitations
The primary limitation of this study was the limited sample size.
Our study consisted of 60 participants with SSDs, including 18
participants who relapsed. Most participants did not relapse at
multiple points throughout the study and we could not assess
whether the features underlying anomalies were consistent with
relapse for those participants. To the best of our knowledge,
this is still the largest study utilizing anomaly detection to
predict early warning signs of relapse exclusively from
smartphone behavior.

Comparison With Previous Work
Previous work using CrossCheck focused on identifying
symptom exacerbation by predicting participant responses to
the BPRS, a common tool for measuring symptoms of SSDs
[6,18]. CrossCheck data have also been used to identify
significant associations in smartphone social behavior between
the 30-day period before relapse and all other days [19]. We
showed that we can predict behavioral anomalies preceding
relapse events recorded with and without BPRS. In addition, to
the best of our knowledge, only one previous study has utilized
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anomaly detection to identify early warning of psychotic relapse
using a combination of smartphone data and self-reported
behaviors [30]. This study used a statistical approach to identify
near relapse anomalies within 3 participants. We expand this
work by showing that anomaly detection can be used to predict
an increase in anomalies before relapse on a larger data set of
18 participants. In addition, we derived features from passive
sensing data exclusively, creating an anomaly detection method
that does not rely on patient self-report.

Future Work
Future work should develop approaches to identify early
warning signs of relapse across larger and more diverse patient
populations with SSDs. These approaches could be tested across
different smartphone passive sensing apps such that they become
platform independent. In addition, researchers should train
models to detect patient-specific relapse signatures, which could

increase model sensitivity. Finally, a tool should be codesigned
with clinicians and patients for remote monitoring of SSD
symptoms.

Conclusions
In summary, we created an anomaly detection model using
encoder-decoder neural networks to predict early warning signs
of psychotic relapse. Our model predicted an increase in
anomalies within the 30-day period preceding relapse. We
developed a methodology to uncover behaviors that change
before relapse, which could be used to identify patient-specific
relapse signatures. Finally, we discussed the implications of
this work and showed an example visualization of a remote
monitoring system for SSDs. We hope that this work advances
the field of digital mental health to create effective remote
monitoring systems for serious mental illness.
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