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I ADDITIONAL DETAILS ON IDENTIFYING INDICATORS OF RESILIENCE
GEE parameters, like many linear models, cannot be reliably estimated as a multivariate regression if independent
variables are highly correlated [1]. We suspected high correlations within the created 37 potential indicators of
resilience, and thus we conducted our analysis in steps to reduce multicollineariaty. We first created separate
GEE models for each potential indicator ("univariate GEE"), with controls and specialty groupings. We then
filtered to significant (𝛼 = 0.05) indicators from the univariate GEEs, and began adding each of these indicators
to a combined "multivariate GEE" model. Indicators were added by iterating through each hourly feature, and
significance. For example, we first would attempt to add the mood EMA most significant indicator, then the
seconds in bed most significant indicator, etc. We used this ordering to create more hourly feature diversity
within the multivariate GEE model. To reduce multicollinearity, indicators were only added to the multivariate
GEE if their variance inflation factor (VIF) between the current indicators within the multivariate GEE was <5.
VIF estimates the explained variance for an independent variable from all other independent variables within
a model [3]. A VIF>5 means that more than 50% of a variable’s variance is explained by all other independent
variables currently within a model.

II DENSITY ESTIMATION MODELS
Figure II.1a gives an overview of the density estimation procedure. We now describe this procedure in more
detail.

II.1 Generative Adversarial Networks (GAN)
II.1.1 Conceptual. GANs take an adversarial approach to density estimation. An adversarial approach is a type
of modeling approach where two models compete against each other [4]. In a GAN, the two models are called a
generator,𝐺 , which is a neural network, and a discriminator,𝐷 , which is a second neural network. The generator’s
role is to input random noise, 𝑧 ∈ R, and generate a data point from this random noise that comes from a target
distribution 𝐵. In other words, 𝐺 (𝑧) outputs a 𝑏 ′ ∈ R, and 𝑏 ′ comes from the generated distribution 𝐵′. As the
generator is trained, ideally, 𝑏 ′ −→ 𝑏, where 𝑏 ∈ 𝐵,𝑏 ∈ R which in turn pushes 𝐵′ −→ 𝐵.

The discriminator’s (𝐷) role is to take a generated (𝑏 ′) or real (𝑏) data point, and discriminate between whether
the data point comes from the real (𝐵) or generated (𝐵′) distribution. In other words, the discriminator is a
classifier that outputs a probability that an input comes from the real probability distribution. Thus, a perfect
discriminator would output that 𝐷 (𝑏) = 1 and 𝐷 (𝑏 ′) = 0. A GAN is called a generative "adversarial" network,
because it is the generator’s job to "fool" the discriminator into thinking that a generated data point is a true data
point, which amounts to the discriminator outputting that a generated data point (𝑏 ′) is highly likely to come
from the "real" distribution, i.e. 𝐷 (𝑏 ′) −→ 1.

The generator,𝐺 , and discriminator, 𝐷 , are jointly trained, which means they compete during model training.
As the generator outputs higher quality data points, the discriminator learns to discriminate these higher quality
data points, and thus the generator must re-learn to fool the discriminator. This "competition" continues during
model training, and the generator learns to create data points that look more realistic.
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(a)

(b)

Fig. II.1. The (a) training and (b) testing pipeline. In the training pipeline (a) (from left to right), we collect 14 months of data
from medical interns, use this data to create clusters (tasks) for participant multitasking models, and then train models that
generate during-internship multivariate passive sensing and EMA densities per participant. In the testing pipeline (b) (from
left to right), we collect data through the first quarter of the internship, and use this data to generate a multivariate density
of passive sensing and EMA data per participant for the entirety of the internship. If the trained model uses participant
multitasking, we generate data for each cluster (task), and choose the cluster whose generated data most closely matches
the actual Q1 data of the participant.

II.1.2 Formalization. We can formalize this training process into equations. Let 𝑧 ∈ 𝑍, 𝑧 ∈ R be a random noise
scalar sampled from a standard normal distribution. Let 𝐺 : R −→ R be a generator, which creates a generated
𝑏 ′ ∈ 𝐵′, 𝑏 ′ ∈ R from a random 𝑧, i.e. 𝑏 ′ = 𝐺 (𝑧). Let 𝐷 : R −→ R be a discriminator, or a classifier, that outputs a
probability that an input data point comes from the true data distribution 𝐵.

We can thus define an objective function, similar to the original GAN formulation in [4]. Since the discriminator
wants to distinguish real data points with high probability, it wants to maximize 𝐷 (𝑏) and minimize 𝐷 (𝑏 ′) =
𝐷 (𝐺 (𝑧)). This is equivalent to the discriminator maximizing both𝐷 (𝑏) and 1−𝐷 (𝑏 ′) = 1−𝐷 (𝐺 (𝑧)). The generator
wants to maximize 𝐷 (𝐺 (𝑧)), or minimize 1 − 𝐷 (𝐺 (𝑧)) which is equivalent to "fooling" the discriminator. The
optimization occurs by training the following equation:
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𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷L𝐺𝐴𝑁 (𝐺,𝐷, 𝐵, 𝑍 )

L𝐺𝐴𝑁 (𝐺, 𝐷, 𝐵, 𝑍 ) = E𝑏∈𝐵 [𝐷 (𝑏)2] + E𝑧∈𝑍 [(1 − 𝐷 (𝐺 (𝑧)))2]

𝑏 ∈ 𝐵, 𝑧 ∈ 𝑍,𝑏 ∈ R, 𝑧 ∈ R

(1)

The objective includes both E𝑏∈𝐵 [𝐷 (𝑏)2] and E𝑧∈𝑍 [(1−𝐷 (𝐺 (𝑧)))2], where E[·] is the expected value, or mean
of a distribution. Qualitatively, this translates to optimizing the mean squared error of discriminator output using
both actual data points within 𝐵 and generated 𝐺 (𝑍 ) = 𝐵′.

II.1.3 Conditional GAN. In this work, we wanted to generate a specific multivariate hourly feature internship
distribution 𝐵 from a multivariate hourly feature baseline distribution 𝐴 per participant. There is a family of
GANs, called conditional GANs (CGAN), that add an additional loss to the GAN objective described in equation
1. The objective of this conditional loss is to push the generated distribution for a participant, 𝐵′, to the actual
target internship distribution 𝐵, per participant.
We followed a similar CGAN framework as [6]. Let us define multivariate data points 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑎 ∈

R𝑚, 𝑏 ∈ R𝑚 , where 𝐴 is the multivariate baseline distribution and 𝐵 is the multivariate intern distribution for
a participant.𝑚 is the number of hourly features. We now define a multivariate generator, 𝐺𝐴𝐵 : R𝑚 −→ R𝑚 ,
such that 𝑏 ′ = 𝐺𝐴𝐵 (𝑎). Thus, the generator inputs one multivariate hourly baseline data point, and outputs a
generated internship multivariate hourly data point. We also define a multivariate discriminator 𝐷𝐵 : R𝑚 −→ R.
The discriminator inputs an internship multivariate real or generated hourly data point, 𝑏 or 𝑏 ′, and outputs the
likelihood the data point comes from an actual or generated distribution. The GAN objective used in this work is
the following two-player game.

𝑚𝑖𝑛𝐺𝐴𝐵
𝑚𝑎𝑥𝐷𝐵

L𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵)

L𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵) = E𝑏∈𝐵 [𝐷𝐵 (𝑏)2] + E𝑎∈𝐴 [(1 − 𝐷𝐵 (𝐺𝐴𝐵 (𝑎)))2]

𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑎 ∈ R𝑚, 𝑏 ∈ R𝑚

(2)

We also introduced a conditional loss, or L𝐶𝑂𝑁 , similar to [6], which attempts to minimize the differences
between the actual 𝑏 ∈ 𝐵 and generated 𝑏 ′ ∈ 𝐵′ for each participant. Within this work, specific data points 𝑎 ∈ 𝐴

and 𝑏 ∈ 𝐵 are unpaired in the sense that there is no specific 𝑎 that should directly map to a 𝑏. That being said,
a well-generated distribution for an individual, 𝐵′, should have the same characteristics (eg, mean, variance,
skewness) as the actual distribution 𝐵. We thus wanted to choose a conditional loss function focused on high-level
distribution characteristics instead of trying to minimize the error between individual generated and actual data
points.
The maximum mean discrepancy (MMD) is a two sample test, testing the hypothesis that two samples are

drawn from the same distribution [5]. The MMD has been used to measure the differences between a true and
generated data distribution from a GAN [13]. The MMD compares the differences between a kernel estimated
over the individual actual and generated distributions, and the mixed distribution of actual and generated data.
The MMD approaches 0 as the sum of the individual kernels approach the mix (i.e. the distributions become
equivalent). Again, let 𝐴 be a set of multivariate hourly feature data points used to generate 𝐵′ for a specific
participant. Let 𝑘 (𝑥,𝑦) be a kernel function. We can define the MMD conditional loss as follows:
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L𝐶𝑂𝑁 (𝐺𝐴𝐵, 𝐴, 𝐵) = E𝑎,𝑎∗∈𝐴
𝑏,𝑏∗∈𝐵

[
𝑘
(
𝐺𝐴𝐵 (𝑎),𝐺𝐴𝐵 (𝑎∗)

)
+ 𝑘 (𝑏,𝑏∗) − 2𝑘

(
𝐺𝐴𝐵 (𝑎), 𝑏

) ]
𝑎 ∈ 𝐴, 𝑎∗ ∈ 𝐴,𝑏 ∈ 𝐵,𝑏∗ ∈ 𝐵, 𝑎 ∈ R𝑚, 𝑎∗ ∈ R𝑚, 𝑏 ∈ R𝑚, 𝑏∗ ∈ R𝑚

(3)

Similar to previous work [9], we used the kernel function 𝑘 (𝑥,𝑦) = ∑𝐾
𝑞=1 𝑘

′
𝜎𝑞
(𝑥,𝑦) where 𝑘 ′

𝜎𝑞
(𝑥,𝑦) is a radial

basis function (RBF) and 𝜎𝑞 is an adjustable bandwidth parameter. We let 𝜎𝑞 equal {1, 2, 4, 8, 16}. The full objective
and loss can be thus described as

𝑚𝑖𝑛𝐺𝐴𝐵
𝑚𝑎𝑥𝐷𝐵

L(𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵)

L(𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵) = L𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵) + L𝐶𝑂𝑁 (𝐺𝐴𝐵, 𝐴, 𝐵)

𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑎 ∈ R𝑚, 𝑏 ∈ R𝑚

(4)

II.1.4 Cohen’s 𝑑𝑠 Discriminator. We created a novel CGAN framework specifically for modeling changes in
the passive sensing and EMA data that can be used to predict indicators of resilience. To do this, we had the
discriminator operate on a calculated feature space, namely the hourly feature Cohen’s 𝑑𝑠 . We expected that the
raw 𝐴 and 𝐵 distributions would overlap, and thus having the GAN loss operate on the raw feature space would
confuse the optimization algorithm. By having the discriminator operate on the Cohen’s 𝑑𝑠 , we would give better
feedback to the GAN loss.
The GAN loss can be re-written as the following, where 𝑑𝑠 ∈ R𝑚 is a vector of Cohen’s 𝑑𝑠 across𝑚 features.

We will define 𝑑𝐴,𝐵𝑠 as the Cohen’s 𝑑𝑠 that uses the multivariate actual internship data (𝐵), and 𝑑
𝐴,𝐺𝐴𝐵
𝑠 as the

Cohen’s 𝑑𝑠 that uses the multivariate generated internship data (𝐺𝐴𝐵). Note that we are no longer taking the
expectation over the data, since the Cohen’s 𝑑𝑠 summarizes the baseline and generated distribution changes:

L𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵) =
[
𝐷𝐵

(
𝑑𝐴,𝐵𝑠

) ]2 +
[
1 − 𝐷𝐵

(
𝑑𝐴,𝐺𝐴𝐵
𝑠

) ]2

𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑎 ∈ R𝑚, 𝑏 ∈ R𝑚, 𝑑𝐴,𝐵𝑠 ∈ R𝑚, 𝑑𝐴,𝐺𝐴𝐵
𝑠 ∈ R𝑚

(5)

The model with the Cohen’s 𝑑𝑠 discriminator will be referred to as the "CGAN" for the rest of this work, and
the process to input and output a multivariate hourly data point into the CGAN can be found in Figure II.2. A
higher level view of the CGAN can be found in Figure II.3a.

II.1.5 Multitask CGAN. Multitask learning (MTL) is a machine learning technique used to train separate, but
related prediction tasks together [2]. Previous work has used MTL to train separate but related facial detection
tasks, such as face pose estimation and facial localization [14], and has also improved neural network model
performance within tasks that individually have scarce data [7]. We experimented with two novel applications
of MTL within a CGAN. We did not have enough data to train a task for each individual. Similar to [12], we
clustered individuals together that experienced similar feature changes once the internship began, and treated
training a model for each cluster as a separate task. We will describe the clustering procedure in future sections.
We consider a multivariate hourly data point from the internship distribution composed of𝑚 features 𝑏 =

(𝑏1, ..., 𝑏𝑚), 𝑏 ∈ R𝑚 . We will treat the process to train a network to accurately generate a distribution of each
internship hourly feature 𝑏 𝑗 ∈ 𝐵 𝑗 , 𝑏 𝑗 ∈ R as a single task. We first created a Feature Multitask CGAN (F - CGAN),
described in Figure II.3b, where we utilized the CGAN as a base model, but then replaced the single multivariate
discriminator for all features 𝐷𝐵 with a separate discriminator, 𝐷𝐵 𝑗

: R −→ R for each feature that is trained to
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Fig. II.2. The conditional generative adversarial network (CGAN) architecture. Hidden layers are shown as black boxes for
simplicity, but they are composed of multiple fully connected neural network layers. As an example, we describe how a
multivariate data point can be generated and passed into the discriminator. (1) A single multivariate baseline hourly data
point 𝑎 ∈ 𝐴 is input into the generator, 𝐺𝐴𝐵 , which outputs a single generated multivariate hourly internship data point,
𝑏 ′ ∈ 𝐵′. (2) After inputting a set of multivariate baseline data points into the generator and outputting a set of generated
internship data points for an individual, a generated internship multivariate mean 𝑋𝐵′

𝑗
and sample standard deviation 𝑆𝐷𝐵′

𝑗

can be calculated for each feature, 𝑗, 𝑗 ∈ {1, ...,𝑚}, where there exist𝑚 total features. This can be used to then calculate
a predicted Cohen’s 𝑑𝑠 for each feature, 𝑑𝑠1 , ..., 𝑑𝑠𝑚 . (3) The Cohen’s 𝑑𝑠 for each feature can be input into the multivariate
input layer of the discriminator 𝐷𝐵 , which outputs the probability the multivariate Cohen’s 𝑑𝑠 was calculated using actual
or generated data. For the feature multitasking networks, the discriminators for each feature’s Cohen’s 𝑑𝑠 𝑗 do not share any
layers. For the participant multitasking networks, there are additional output layers specific to each cluster on the generator,
and each cluster has a unique discriminator which does not share any layers with other cluster discriminators.

(a) (b) (c) (d)

Fig. II.3. The (a) conditional generative adversarial network (CGAN) which uses a discriminator with Cohen’s 𝑑𝑠 inputs,
(b) feature multitask learning CGAN (F - CGAN) with separate discriminators (𝐷𝐵 𝑗

) for each feature’s Cohen’s 𝑑𝑠 𝑗 (c)
participant multitask learning CGAN (P - CGAN) with separate output layers for each cluster in the generator (𝐺𝐴𝐵,𝑐 )
and separate discriminators per clusters (𝐷

𝑐𝐵 ) (d) and feature participant multitask learning CGAN (FP - CGAN), which
combines the separate feature and cluster discriminators (𝐷

𝑐𝐵 𝑗
), as well as cluster-specific hidden layers in the generator

(𝐺𝐴𝐵,𝑐 ). 𝐴 is a multivariate hourly feature baseline distribution for an individual, and 𝐵 is a multivariate hourly feature
internship distribution for an individual. 𝐺𝐴𝐵 is a generator, and 𝐷𝐵 is a discriminator. 𝑗 ∈ {1, ...,𝑚} identifies a specific
feature, out of𝑚 total features, and 𝑐 ∈ {1, ...,𝐶} is a participant cluster out of 𝐶 possible clusters. 𝑑𝑠 𝑗 is the Cohen’s 𝑑𝑠 for a
specific feature, calculated from baseline and internship data.
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predict whether a feature’s Cohen’s 𝑑𝑠 𝑗 , is an actual or predicted Cohen’s 𝑑𝑠 𝑗 . Let (𝐺𝐴𝐵) 𝑗 be a specific feature
output from a multidimensional generator 𝐺𝐴𝐵 . The new GAN loss then averages together the individual GAN
losses from the separate discriminators:

L𝐺𝐴𝑁 =
1
𝑚

𝑚∑
𝑗=1

L
𝑗𝐺𝐴𝑁 ((𝐺𝐴𝐵) 𝑗 , 𝐷𝐵 𝑗

, 𝐴 𝑗 , 𝐵 𝑗 )

L
𝑗𝐺𝐴𝑁 ((𝐺𝐴𝐵) 𝑗 , 𝐷𝐵 𝑗

, 𝐴 𝑗 , 𝐵 𝑗 ) =
[
𝐷𝐵 𝑗

(
𝑑
𝐴 𝑗 ,𝐵 𝑗

𝑠 𝑗

) ]2 +
[
1 − 𝐷𝐵 𝑗

(
𝑑
𝐴 𝑗 ,(𝐺𝐴𝐵 ) 𝑗
𝑠 𝑗

) ]2

𝑏 𝑗 ∈ 𝐵 𝑗 , 𝑎 𝑗 ∈ 𝐴 𝑗 , 𝑏 𝑗 ∈ R, 𝑎 𝑗 ∈ R, 𝑑𝑠 𝑗 ∈ R, (𝐺𝐴𝐵) 𝑗 ∈ R, 𝑗 ∈ {1, ...,𝑚}

(6)

We also created a Participant Multitask CGAN (P - CGAN), described in Figure II.3c, where we first clustered
participants based upon their actual Cohen’s 𝑑𝑠 , and treated each cluster as a single task. Specifically, we added
an extra linear layer to the generator, 𝐺𝐴𝐵 , and trained a separate discriminator for each cluster. If we have
𝐶 clusters, we would thus train 𝐶 separate 𝐷𝐵 . During training, we can pick a specific participant, and only
back-propagate through the shared layers and cluster-specific layers for that participant. In this case, let 𝑐 be the
cluster for a participant, and let 𝐺𝐴𝐵,𝑐 be a generator that will propagate an input through an extra linear layer
specifically for cluster 𝑐 . Let 𝐷

𝑐𝐵 be the discriminator for cluster 𝑐 , and 𝑑𝑠 the multidimensional Cohen’s 𝑑𝑠 . The
GAN loss becomes:

L𝐺𝐴𝑁 (𝐺𝐴𝐵,𝑐 , 𝐷𝑐𝐵, 𝐴, 𝐵) =
[
𝐷

𝑐𝐵

(
𝑑𝐴,𝐵𝑠

) ]2 +
[
1 − 𝐷

𝑐𝐵

(
𝑑
𝐴,𝐺𝐴𝐵,𝑐

𝑠

) ]2

𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴,𝑏 ∈ R𝑚, 𝑎 ∈ R𝑚, 𝑑𝑠 ∈ R𝑚, 𝑐 ∈ {1, ...,𝐶}
(7)

Finally, we combined both the F - CGAN and P - CGAN to create a Feature and Participant - Multitask CGAN
(FP - CGAN), described in Figure II.3d, which first propagated a cluster-specific output for a participant, and then
had separate discriminators for each cluster and feature, 𝐷

𝑐𝐵 𝑗
. The FP - CGAN L𝐺𝐴𝑁 loss is:

L𝐺𝐴𝑁 =
1
𝑚

𝑚∑
𝑗=1

L
𝑗𝐺𝐴𝑁 ((𝐺𝐴𝐵,𝑐 ) 𝑗 , 𝐷𝑐𝐵 𝑗

, 𝐴 𝑗 , 𝐵 𝑗 )

L
𝑗𝐺𝐴𝑁 ((𝐺𝐴𝐵,𝑐 ) 𝑗 , 𝐷𝑐𝐵 𝑗

, 𝐴 𝑗 , 𝐵 𝑗 ) =
[
𝐷

𝑐𝐵 𝑗

(
𝑑
𝐴 𝑗 ,𝐵 𝑗

𝑠 𝑗

) ]2 +
[
1 − 𝐷

𝑐𝐵 𝑗

(
𝑑
𝐴 𝑗 ,(𝐺𝐴𝐵,𝑐 ) 𝑗
𝑠 𝑗

) ]2

𝑏 𝑗 ∈ 𝐵 𝑗 , 𝑎 𝑗 ∈ 𝐴 𝑗 , 𝑏 𝑗 ∈ R, 𝑎 𝑗 ∈ R, 𝑑𝑠 𝑗 ∈ R, (𝐺𝐴𝐵,𝑐 ) 𝑗 ∈ R, 𝑐 ∈ {1, ...,𝐶}, 𝑗 ∈ {1, ...,𝑚}

(8)

II.2 Clustering for Participant MTL Models
We clustered the training data using K-Means and Ward Hierarchical Agglomerative Clustering [8] to find initial
participant clusters (individual MTL tasks) within the participant MTL models. The Cohen’s 𝑑𝑠 for each training
participant and feature were calculated, and we used principle components analysis to reduce noise within the
feature space. The silhouette score, which quantifies both the tightness of within-cluster data and the distance
between adjacent clusters, was used to choose the number of components, clusters, and clustering algorithm. We
varied the number of clusters from 2-10, and we added component dimensions until 99% of the variance between
features was explained. After model training, we generated data from all clusters for each test participant. We
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then computed the MMD between the generated data, and the actual first quarter internship data for each test
participant. The generated data from the cluster that achieved the lowest MMD per participant compared to the
first quarter data (Q1) were included within our results, and all other data were removed for that participant.

II.3 Model Hyperparameters
Models were built using Pytorch [10], and trained for 1,000 epochs. During each epoch, we trained models
using a modified batch gradient descent procedure to force model updates to account for individual participant
differences, and act as a regularizer. We iterated through every training participant during each epoch, and
randomly sampled 𝑛𝑏𝑎𝑡𝑐ℎ data points per participant where 𝑛𝑏𝑎𝑡𝑐ℎ =𝑚𝑖𝑛(𝑛𝐴, 𝑛𝐵), defining 𝑛𝐴, 𝑛𝐵 as the number
of hourly data points within individual-level distributions 𝐴, 𝐵 respectively. Gradient updates were performed
during every participant by epoch iteration. Models were trained using the Adam optimizer with different initial
learning rates (0.001, 0.0001).
All generators and discriminators used fully connected linear layers within an encoder-decoder based archi-

tecture similar to [6], but with fully connected layers only. Given𝑚 input features to a network, the generator
architecture had three hidden layers of size (2𝑚, 4𝑚, 2𝑚), and the discriminator architecture had two hidden
layers of size (2𝑚, 4𝑚). In addition, we trained a neural network model (GEN) that optimized only the generator
𝐺𝐴𝐵 , to study if using the CGAN framework improved the prediction performance over a simpler model. We also
applied participant multitasking to the baseline generator model (P - GEN) to see if it improved baseline model
performance. We experimented with adding more hidden layers across models, but deeper networks increased
training time with minimal improvements to model performance.
Dropout (rate = 0.2) [11] was used for additional regularization between linear layers of the discriminator.

All features were scaled between [−1, 1]. ReLU activation was used for the generator hidden layers and Tanh
activation was used for the output activation. Leaky ReLU layers were used for the discriminator hidden activation
(negative slope = 0.2), and a sigmoid layer was used for the output activation.

The model architecture and training procedure were chosen based upon experimentation within the training
dataset, by examining the effects of changes in these parameters on convergence and runtime. After solidifying
the model architecture and training procedure, all models were trained using the 80% training data, and then
predictions were calculated for held-out test participants, for each model and initial learning rate.

II.4 Initial Learning Rates
We trained models with three initial learning rates (0.01, 0.001, 0.0001), and for space, reported the results for
each model with the initial learning rate that minimized the median MMD across participants on the held-out
test dataset. The initial learning rates for these final models are reported in Table II.1.
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