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Abstract

Mobile sensing data processed using machine learning models can passively and remotely

assess mental health symptoms from the context of patients’ lives. Prior work has trained

models using data from single longitudinal studies, collected from demographically homoge-

neous populations, over short time periods, using a single data collection platform or mobile

application. The generalizability of model performance across studies has not been

assessed. This study presents a first analysis to understand if models trained using com-

bined longitudinal study data to predict mental health symptoms generalize across current

publicly available data. We combined data from the CrossCheck (individuals living with

schizophrenia) and StudentLife (university students) studies. In addition to assessing gener-

alizability, we explored if personalizing models to align mobile sensing data, and oversam-

pling less-represented severe symptoms, improved model performance. Leave-one-

subject-out cross-validation (LOSO-CV) results were reported. Two symptoms (sleep qual-

ity and stress) had similar question-response structures across studies and were used as

outcomes to explore cross-dataset prediction. Models trained with combined data were

more likely to be predictive (significant improvement over predicting training data mean)

than models trained with single-study data. Expected model performance improved if the

distance between training and validation feature distributions decreased using combined

versus single-study data. Personalization aligned each LOSO-CV participant with training

data, but only improved predicting CrossCheck stress. Oversampling significantly improved

severe symptom classification sensitivity and positive predictive value, but decreased

model specificity. Taken together, these results show that machine learning models trained

on combined longitudinal study data may generalize across heterogeneous datasets. We

encourage researchers to disseminate collected de-identified mobile sensing and mental

health symptom data, and further standardize data types collected across studies to enable

better assessment of model generalizability.
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Introduction

Mental health measurement is largely dependent upon patient self-reports, limited to infre-

quent and inaccessible clinical visits, resulting in delayed treatment. Motivated by these limita-

tions, ubiquitous computing and mental health researchers have explored using near-

continuous data streams passively collected from mobile devices (mobile sensing) to remotely

measure behaviors associated with mental health [1]. Behavioral features are input into

machine learning models, which are trained to predict self-reported or clinically-rated symp-

toms of mental health [2–7]. In addition to mobile sensing data, researchers have explored

using brain images, neural activity recordings, electronic health records, voice and video

recordings, and social media data to predict mental health outcomes [8–13].

Bardram et al. highlighted that despite the enormous potential of mobile sensing technolo-

gies for remote mental health symptom assessment, the field is far from introducing mobile

sensing derived measures of mental health in practice, specifically highlighting that the diver-

sity of data types collected across studies creates challenges for cross-study validation, and

there is a lack of research into the reproducibility and generalizability of prediction models

[14]. To date, most machine learning models leveraging mobile sensing data to predict mental

health symptoms have been trained and validated within the context of a single longitudinal

study [15–25]. Thus, using these models in practice is tenuous, as symptom-mental health rela-

tionships are heterogeneous, and models are not guaranteed to generalize outside of any par-

ticular homogenous population [26–28]. Studies often collect data from a single type of device

or mobile application [2,4,27,28]. Software and hardware evolve, and these evolutions can

change prediction performance [29]. There is a critical gap in the literature to understand if

machine learning models trained using heterogeneous datasets containing distinct popula-

tions, collected at different time periods, and with different data collection devices and sys-

tems, generalize—i.e. models trained using combined retrospective data to predict held-out

participants’ mental health symptoms across multiple studies achieve similar performance

compared to models trained using data collected exclusively from each individual study.

This study addressed this gap by exploring if machine learning models can be trained and

validated across multiple mobile sensing longitudinal studies to predict mental health symp-

toms. We leveraged data from two longitudinal mobile sensing studies: a clinical study of indi-

viduals living with schizophrenia, and a non-clinical study of university students. Studies took

place 2 years apart, using different mobile applications and smartphone generations to collect

data. To the best of our knowledge, the data collected from these studies are the only two

examples of publicly available data collected to predict longitudinal mental health symptoms

from mobile sensing data thus far. Though the studied populations are very different, both

schizophrenia patients and university students exhibit increased levels of depression and anxi-

ety symptoms compared to the general population [30–34]. By analyzing if machine learning

models trained by combining data from these two distinct populations generalize, we are not

hypothesizing that the psychopathology of schizophrenia patients is similar to college students.

Instead, we are exploring if the manifestation of shared mental health symptoms within mobile

sensing derived behavioral features between two distinct populations changes a machine learn-

ing model’s predictive power. It is entirely possible that the relationship between behavior and

mental health within the two study populations are too differentiated, and the combined data

decreases the model’s predictive power. In this paper, we aim to uncover if and when this is

true.

Our results show the difficulties of aligning both mobile sensing behavioral features and

symptom self-reports across two distinct studies, and we discuss suggestions to improve sens-

ing feature and cross-study symptom alignment, opening the door to continued work
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analyzing model generalizability. We then explored if models generalize across symptoms and

study populations, and identified a distance metric quantifying the expected model perfor-

mance improvement as training and held-out validation behavioral feature distribution align-

ment increased. We experimented with methods to personalize models, and oversampling to

improve prediction of severe mental health symptoms underrepresented in data, underpre-

dicted by machine learning models, yet most critical to detect [2,35,36].

Methods

In this section, we first summarize the StudentLife and CrossCheck studies and data, which

are the two longitudinal mobile sensing datasets analyzed in this work. Data collection was not

completed in this study, and all analyses included in this study were completed on de-identi-

fied publicly released versions of the datasets, downloaded from [37,38]. Please see [3,4] for

further details on data collection. We then describe the specific analyses used in this work to

explore if models trained using combined (CrossCheck and StudentLife) longitudinal study

data to predict mental health symptoms generalize. Specifically, we describe methods used to

align collected sensor data and outcome measures across the two datasets, train and validate

machine learning models, oversample minority outcomes to reduce class imbalance, and per-

sonalize models by aligning behavioral feature distributions. Table 1 summarizes the datasets

used in this work and Fig 1 summarizes the modeling flow.

Table 1. Comparing the CrossCheck and StudentLife datasets used in this work.

CrossCheck StudentLife

Populations Patients with schizophrenia, schizoaffective

disorder, or psychosis non-specified in

treatment at a hospital in the New York Metro

area, with at least one major psychosis-related

psychiatric event reported in the past year.

Students at an Ivy League University in the

Northeast United States taking a Spring-

term Computer Science course.

Intended Study

Duration

1 year 10 weeks

Data Collection

Period

2015–2017 Spring 2013

Data Collection

Devices

Samsung Galaxy S5 (Android operating

system).

Personal Android phones (devices vary).

Those who did not own an Android phone

were given a Nexus 4s provided by the

researchers.

Number of

Participants, n

61 48

Age, mean (SD) 37.11 (13.85) Not available in dataset or paper

Female, n (%) 25 (41%) 10 (21%)

Caucasian 22 (36%) 23 (48%)

Asian 1 (2%) 23 (48%)

African American 18 (30%) 2 (4%)

Pacific Islander 4 (7%) 0 (0%)

American Indian/

Alaskan Native

1 (2%) 0 (0%)

Multiracial 13 (21%) 0 (0%)

Missing 2 (3%) 0 (0%)

Information about CrossCheck and StudentLife was extracted from previous publications [4,39]. SD: Standard

deviation.

https://doi.org/10.1371/journal.pone.0266516.t001
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CrossCheck study and dataset

Wang et al. collected and partially released data from the smartphone arm of the CrossCheck

study publicly [3]. The CrossCheck study was conducted between 2015–17 to develop mobile

sensing indicators of schizophrenia symptoms. Adult participants with a medical record diag-

nosis of schizophrenia, schizoaffective disorder, or psychosis were recruited from treatment

programs at a psychiatric hospital in the northeast U.S., could operate a smartphone, had a

sixth grade reading level, provided informed consent, and had psychiatric crisis management

12-months prior to study enrollment. Participants were then randomized into the smart-

phone/non-smartphone arms of the study. This study only used publicly available smartphone

sensing data from participants in the smartphone arm of the CrossCheck study. Participants in

the smartphone arm were loaned a Samsung Galaxy S5 Android phone. The CrossCheck

study was approved by the Dartmouth College and Northwell Health System IRBs, and regis-

tered as a clinical trial (NCT01952041) [3].

Participants downloaded and installed the CrossCheck application, which passively col-

lected smartphone sensing data and administered ecological momentary assessments (EMAs)

for 12 months. The public CrossCheck dataset is composed of calculated daily and hourly

mobile sensing behavioral features and EMAs from 61 individuals. Other surveys, clinical

information, and demographic data collected during the CrossCheck study were neither pub-

licly released nor used in this research [2,3,5].

CrossCheck sensing data. The CrossCheck application used the Android activity applica-

tion programming interface (API) to infer if individuals were on foot, still, on a bicycle, tilting,

or conducting an unknown activity. Activity was collected every 10 seconds during movement

and 30 seconds when stationary. The application tracked conversational episodes (not content)

and daily bed/wake times. GPS coordinates were transformed to track unique locations and

travel distance. Call and text messaging metadata and the duration and number of times the

phone was unlocked were extracted. Lastly, the application tracked ambient noise/light [3].

CrossCheck EMA data. The CrossCheck application administered 10 EMAs to partici-

pants every Monday, Wednesday, and Friday to track symptoms of schizophrenia, summa-

rized in Table 2 [3]. Participants were asked if they had been feeling depressed, stressed,

bothered by voices, visually hallucinating, worried about being harmed, feeling calm, social,

sleeping well, could think clearly, and were hopeful. Responses were recorded for each EMA

on a scale of 0 (not feeling the symptom at all) to 3 (extremely feeling the symptom).

StudentLife study and dataset. The StudentLife study assessed the relationships between

smartphone sensing data and mental health outcomes of U.S. college students during the

10-week Spring 2013 term. Participants in a computer programming class were eligible to

Fig 1. Modeling overview.

https://doi.org/10.1371/journal.pone.0266516.g001
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participate. 48 total participants consented and completed the study. The StudentLife study

was approved by the Dartmouth College IRB [4].

Participants were given or used their own Android phone for data collection. Participants

downloaded the StudentLife application, which passively collected smartphone sensing data

and administered EMAs for 10 weeks. The public StudentLife dataset is composed of raw

smartphone sensing, EMAs, and survey data collected from participants. Surveys were admin-

istered upon study entry/exit to assess baseline mental health, and educational data was

obtained. Corresponding survey and educational data was not available in the CrossCheck

dataset and not used in this research.

StudentLife sensing data. The StudentLife application automatically inferred whether

individuals were walking, running, stationary, or conducting an unknown activity. Conversa-

tional episodes (not content) were tracked, as well as WiFi and bluetooth scan logs to deter-

mine indoor locations. GPS longitude and latitude coordinates were collected to track outdoor

location. The study application extracted call/text logs, duration/number of times the phone

was locked for�1 hour, and charge duration. The application also inferred when participants

were in a dark room for�1 hour [4].

StudentLife EMA data. Participants were prompted through the application to answer a

variety of EMAs. EMAs were administered at varied frequencies, and were occasionally added

or removed throughout the study to collect participants’ perspectives on specific events.

Administered EMAs asked participants about their emotions (e.g. “In the past 15 minutes, I

was calm, emotionally stable.”), physical activity, mood, current events, sleep, stress, and soci-

ality. In this study, we specifically focused on EMAs that asked students about their mental

health, summarized in Table 3.

Sensor-EMA alignment across studies

We aligned raw StudentLife data to the CrossCheck daily feature data. While publicly released

CrossCheck data included daily and hourly features, we used daily features following prior lit-

erature analyzing the CrossCheck data to predict triweekly EMAs [3]. The daily data included,

for each variable, a daily summary feature and four 6-hour epoch features summarizing data

from 12AM-6AM, 6AM-12PM, 12PM-6PM, and 6PM-12AM. For example, for each day, the

data included a single feature describing the total number of conversations an individual

engaged in throughout a day, and 4 features describing the number of conversations within

each 6-hour epoch. We computed the equivalent daily and four 6-hour epoch features for each

Table 2. The ecological momentary assessment (EMA) symptom outcome measures collected during the Cross-

Check study.

From 0 (Not at all) to 3 (Extremely). . .

Have you been feeling CALM?

Have you been SOCIAL?

Have you been bothered by VOICES?

Have you been SEEING THINGS other people can’t see?

Have you been feeling STRESSED?

Have you been worried about people trying to HARM you?

Have you been SLEEPING well?

Have you been able to THINK clearly?

Have you been DEPRESSED?

Have you been HOPEFUL about the future?

https://doi.org/10.1371/journal.pone.0266516.t002
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aligned StudentLife variable, and similar to previous work, excluded data from any day of Stu-

dentLife data that did not contain at least 19 hours of collected data [3].

This resulted in 5 features for each of the following: activity duration on foot, still, and

unknown, duration and number of conversations, location distance, phone unlock duration,

and number of unique locations. In addition, we included features representing the daily sleep

start, end, and duration (43 total). Call/text message data was included in the downloadable

StudentLife data file. The StudentLife publication did not describe this data and raw file for-

mats were inconsistent across participants. Thus, we excluded call/text log data [4]. A sum-

mary of the sensor data types across studies, and whether each data type was used in the

analysis, with reasoning, is described in Table 4.

EMAs in both studies were not administered daily, and EMAs from the CrossCheck study

were delivered and responded to more consistently (every 2–3 days) compared to StudentLife

EMAs. Thus, similar to previous work predicting EMAs collected from the CrossCheck study,

we calculated the mean of each behavioral feature across the three days up to and including an

EMA response to align features and EMAs for prediction [3]. For example, if a participant

responded to an EMA on day 6, the mean behavioral feature values from days 4–6 were used

as model inputs to predict that EMA.

Data was occasionally missing for an individual, or our 19-hour coverage rule removed a

day of data. We could fill data (e.g. interpolation) to mediate this issue, but filling may bias the

data towards common values, making it difficult for models to identify feature variations

indicative of mental health changes [5]. Similar to previous work, we created a 44th feature,

describing the number of missing days of data within the averaged 3-day period [5,41]. For the

StudentLife sleep features specifically, data was occasionally missing for all days within the

3-day period. In this case, we simply filled the 3-day average sleep features with the mean sleep

feature value for that individual. Filling missing data in longitudinal behavioral data streams is

an active area of research, and future work should clarify best practices [42]. All features are

summarized in Fig 2.

Model training and validation

We trained gradient boosting regression trees (GBRT) to predict self-reported EMA symp-

toms. We used GBRTs following prior research predicting mental health symptoms from

mobile sensing data [2,3]. GBRTs sequentially train ensembles of shallow decision trees. Each

added tree corrects mistakes from trained trees by upweighting incorrectly predicted samples.

Table 3. The mental health ecological momentary assessment (EMA) symptom outcome measures collected dur-

ing the StudentLife study.

Question

Do you feel AT ALL happy right now (Yes/No)?

Do you feel AT ALL sad right now (Yes/No)?

How are you right now? (1) Happy, (2) Stressed, (3) Tired

How do you think you will be this time tomorrow? (1) Happy, (2) Stressed, (3) Tired

How would you rate your overall sleep last night? (1) Very good, (2) Fairly good, (3) Fairly bad, (4) Very bad

Right now, I am. . . (1) A little stressed, (2) Definitely stressed, (3) Stressed out, (4) Feeling good, (5) Feeling great

From 1 (Not at all) to 5 (Extremely), in the past 15 minutes, I was anxious, easily upset.

From 1 (Not at all) to 5 (Extremely), in the past 15 minutes, I was calm and emotionally stable.

A full list of the over 80 different EMAs (mental health and non-mental health related) asked throughout the

StudentLife study can be found on the StudentLife website [37].

https://doi.org/10.1371/journal.pone.0266516.t003
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Final predictions are obtained by adding predictions from trees in the order of training [3].

We varied hyperparameters including the learning rate (0.001, 0.01, 0.1, 1.0), number of trees

trained (20, 100, 1000), and individual tree depth (3, 7, 10). All trees were trained using a

Huber loss [3].

Table 4. The sensor data alignment between CrossCheck and StudentLife sensing data.

Data Element Data Element Description Data Element Used in Analysis?

Activity The Android activity recognition API records information about

whether a user is: on foot, walking, running, still, in vehicle, on bicycle,

tilting, and unknown.

Yes: Specifically, the on foot, still, and unknown activity data. Walking and

running values were zeroed-out in CrossCheck data, and thus we summed

StudentLife walking and running variables to create an equivalent on foot

variable. Bicycle, tilting, and in vehicle variables were not available in the

StudentLife data.

Audio

Amplitude

The ambient sound from a user’s environment. No: Not available in the StudentLife data.

Bluetooth MAC addresses of surrounding bluetooth devices. No: Not available in CrossCheck data.

Call/Text Logs When a call/text occurred, and the call/text type. No: Lack of StudentLife data documentation, and no prior use in previous

StudentLife literature.

Conversation Conversational episodes and duration. Yes

Light The mean and standard deviation of ambient light from a participant’s

environment (CrossCheck), or whether a user is in a dark room

(StudentLife).

No: No mapping between StudentLife and CrossCheck variables.

Location The distance a user traveled, as well as the number of unique locations

visited.

Yes

Phone Charge The duration a phone was charging for a significant amount of time. No: Not available in CrossCheck data.

Phone Lock The duration a phone was locked (StudentLife data) or unlocked

(CrossCheck data)

Yes: Time between phone locks in the StudentLife data was used to

estimate the unlock duration.

Sleep On each day, the sleep duration, onset, and wake time were detected. Yes: Not publicly available in the StudentLife data, but estimated from

phone lock data [40].

WiFi Location WiFi scan logs detailing where an individual is located. No: Not available in CrossCheck data.

The first column describes the unioned data elements across the CrossCheck and StudentLife data, the second column describes the description of that element, and the

third column whether the element was used in the analysis with reasoning. API: Application programming interface; MAC: Media access control.

https://doi.org/10.1371/journal.pone.0266516.t004

Fig 2. Summary of the 44 features used for prediction. Each data type on the left-hand side is summarized over a 3-day period for each epoch (e.g. 12AM -

6AM) using the aggregation technique (mean or count) described on the right-hand side. Aggregations were performed to align features with ecological

momentary assessment (EMA) mental health symptom outcomes.

https://doi.org/10.1371/journal.pone.0266516.g002
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Leave-one-subject-out cross-validation (LOSO-CV) assessed model performance.

LOSO-CV simulates the prediction error of applying models to participants unseen during

model training [43]. We iterated through each participant, training models for each set of

hyperparameters excluding that participant’s data, and then applied trained models to predict

the participant’s EMAs. For each participant and set of hyperparameters, two models (Fig 1,

step 1) were trained: (1) a single-study model using data exclusively from the study that the par-

ticipant belonged to, and (2) a combined model using data across both (CrossCheck and Stu-

dentLife) studies. Participants were included as validation data if they had�30 EMA values

collected. Without this threshold, it would be difficult to measure within-participant model

prediction error [3].

Oversampling to reduce class imbalance

Self-reported severe mental health symptoms are often under-represented in mobile sensing

longitudinal studies, resulting in prediction models that underestimate symptom severity [2].

We used the synthetic minority oversampling technique (SMOTE) to augment each training

dataset to balance EMA values prior to model training (Fig 1, step 2) [2]. SMOTE is a common

oversampling technique that iterates through minority class data points, generating synthetic

data points on the line between each minority data point and its k-nearest neighbors within

the same class [36]. Similar to prior work, we set k = 5, standardized features (mean 0, standard

deviation of 1) prior to SMOTE, and treated using/not using SMOTE as a hyperparameter

[36].

Personalizing models by aligning feature distributions

Mental health-mobile sensing relationships are heterogeneous across individuals, even within

a single-study, and combining data across studies might exacerbate these heterogeneities

[3,44,45]. We experimented with a local personalization procedure (Fig 1, step 3), motivated

by previous work personalizing models with multimodal, longitudinal data streams [46]. For

each held-out participant, we only included the k-nearest neighbors to that participant’s

mobile sensing behavioral features for model training, thus “personalizing” the training data

based upon each participants’ input behavioral feature distributions. k was a model hyperpara-

meter, and we experimented with k = (5, 10, 50, 100, 500). Features were standardized, and

nearest neighbors were identified using the Euclidean distance. Models with/without (using

the entire training dataset) personalization were compared.

Results

Machine learning results were analyzed using sensitivity analyses, where we conducted paired

significance tests to analyze whether, within a specific hyperparameter combination, changing

a single hyperparameter (e.g. combined versus single-study training data) significantly

changed results. Sensitivity analyses were performed to understand performance changes inde-

pendent of specific hyperparameters used, as hyperparameter choices can change conclusions

drawn from optimal models alone [47].

Aligned data overview

Table 5 summarizes the aligned data. CrossCheck participants consistently reported 10 EMAs

every 2–3 days, resulting in 5,853 total EMAs collected. Applying the�30 EMA validation cri-

teria, 5,665 EMAs were collected across 51 participants, median interquartile range (IQR) of

124 (80–141) responses per-participant. Only 3 EMAs—sleep quality, stress, and calmness—

PLOS ONE Passive mental health symptom prediction across different longitudinal mobile sensing studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0266516 April 27, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0266516


had similar question-response structure across studies, and were considered as candidate

EMAs for cross-dataset prediction. 1,079 sleep and 902 stress StudentLife EMAs were col-

lected. 15 StudentLife participants self-reported�30 sleep EMAs (597 total, median [IQR] 38

[33–48]), and 9�30 stress EMAs (307 total responses, median [IQR] 33 [32–36]). The calm

EMA had <30 responses collected across all StudentLife participants, and was not used.

Aligned sensor and EMA distribution differences

All mobile sensing features were non-normally distributed (omnibus test for normality

p<0.001) [48]. We calculated Wendt’s formulation of the rank-biserial correlation (RBC[−1,

1]) to quantify the magnitude of the feature distribution differences across datasets [49]. All

features except for the distance traveled were significantly different (Mann-Whitney U test,

two-sided, or Chi-square test of independence, α = 0.05) between datasets (see Fig 3). Outliers

may be an important indicator of mental health changes, and were not excluded [5].

EMA responses were treated as continuous variables and normalized to a range from 0–3

within each dataset. EMA values were non-normally distributed (omnibus test for normality

p<0.001) [48]. Sleep (U = 1,807,220, p = 0.003, RBC = -0.07) and stress (U = 827,394, p<0.001,

RBC = 0.37) EMA distributions were significantly different (Mann-Whitney U test, two-sided, α
= 0.05) across datasets (see Fig 4). Severe sleep/stress symptoms (scores 2–3) were self-reported

less frequently in both the CrossCheck (22/23%) and StudentLife (21/43%) datasets.

Combined training data more likely to be predictive than single-study data

Table 6 shows, out of the 432 hyperparameter combinations tested, within each model, train-

ing with combined data significantly (α = 0.05) outperformed baseline mean prediction mod-

els more frequently compared to models trained with single-study data. Across models, we

tested the alternative hypothesis that the combined data significantly decreased the LOSO-CV

mean absolute error (MAE) compared to single-study data (ΔMAE = MAESingle-MAECom-

bined). To equalize the influence of each subject, for each hyperparameter combination, we first

calculated the MAE for each subject, and then averaged MAEs across subjects. Model MAE

distributions were non-normal (Shapiro-Wilk p<0.05), and we performed a non-parametric

Wilcoxon signed-rank test (one-sided).

Table 5. Summary of the aligned training and validation data.

CrossCheck StudentLife (Sleep)a StudentLife (Stress)

Total Number of Training Instances 5,853 1,079 902

Total Number of Validation Instances (Participants with�30 EMAs) 5,665 597 307

Number of Validation Participants 51 15 9

Instances across Validation Participants by Median (IQR) 124 (80–141) 38 (33–48) 33 (32–36)

Sleep Validation EMA median (IQR)b 2 (2–3) 2 (2–3) NA

Severe Sleep Validation Self-Reports (%)c 1,240 (22) 126 (21) NA

Stress Validation EMA median (IQR) 1 (0–1) NA 1 (1–2)

Severe Stress Validation Self-Reports (%) 1,292 (23) NA 200 (43)

NA: Not applicable.

a. Characteristics are listed separately for each ecological momentary assessment (EMA) predicted in the StudentLife population (“Sleep” and “Stress”) as not all

individuals who responded to sleep EMAs on a given day also responded to stress EMAs on the same day (and vice versa).

b. CrossCheck Sleep EMA values exist between 0 (low quality sleep) to 3 (high quality sleep), and stress EMA values exist between 0 (low stress) and 3 (high stress).

StudentLife EMA values were scaled between 0 and 3 to match the CrossCheck data.

c. Sleep and stress responses were considered “severe” if they fell into either of the two EMA categories indicating poorer sleep (0–1) or higher stress (2–3) respectively.

https://doi.org/10.1371/journal.pone.0266516.t005
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Fig 5 shows the sorted ΔMAE distribution percentiles across hyperparameters for each

EMA and study, with p-values and matched-pairs RBC[−1, 1], quantifying the proportion of

summed favorable minus unfavorable ranks [49]. Using combined data significantly (α = 0.05)

improved model performance for predicting sleep within CrossCheck (W = 53,200, p = 0.007,

RBC = 0.14) and StudentLife (W = 63,089, p<0.001, RBC = 0.35), and stress within Cross-

Check (W = 55,373, p<0.001, RBC = 0.18), but not StudentLife. Fig 5 also shows the MAE of

combined versus single-study models across percentiles, compared to a baseline MAE of pre-

dicting the training data mean value. Minimum MAE values across different training datasets

(single-study versus combined) were similar.

Combined data improves model performance if feature distribution

alignment increases

We experimented with quantifying when models improved using combined versus single-

study data. We calculated the Proxy-A distance (PAD) between each LOSO-CV held-out

study participant and each model training dataset used. The PAD is 2(1–2ε), where ε is the

Fig 3. Example feature distribution differences across datasets. Assessing feature distributional differences across the CrossCheck (CC), StudentLife sleep

EMA (SL: Sleep), and stress EMA (SL: Stress) validation data for an example 11 features across data types. Each subfigure shows a boxplot of the feature

distribution within each specific dataset. The centerline of the boxplot is the median, the box edges the interquartile range (IQR), and the fences on the boxplot

are values 1.5 x the IQR. The “Missing Days’’ distribution is a histogram, describing counts across participants. A “�” is listed above each of the StudentLife

datasets if the distribution differed significantly (Mann-Whitney U test, two-sided, or Chi-square test of independence, α = 0.05) from CrossCheck. The

numbers above the “�” are the rank-biserial correlation (RBC) or Cramer’s V, which shows the magnitude of these differences. EMA: Ecological momentary

assessment.

https://doi.org/10.1371/journal.pone.0266516.g003
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generalization MAE for a linear support vector machine (SVM) trained to distinguish between

training and validation data. As the PAD decreases, the SVM has greater difficulty distinguish-

ing datasets, implying the data distributions were increasingly similar [52]. We used both gen-

eralized estimating equations (GEE) and linear mixed-effect models (LMM) to estimate the

association between ΔPAD = PADSingle-PADCombined and ΔMAE = MAESingle-MAECombined

within subjects. GEE is a clustered linear regression model, often used instead of LMM because

it places less assumptions on the data-generating distribution, but GEE may have a larger Type

1 error than LMM, resulting in falsely significant associations [50]. Both GEE and LMM results

showed the same significant (pGEE = 0.004, pLMM = 0.007) ΔMAE (95% CI) increase of 0.07

(0.02 to 0.12) per unit increase in ΔPAD (see Table 7).

Fig 4. Outcome distribution differences across datasets. Sleep (left column) and stress (right column) ecological momentary assessment (EMA) validation

distributions for CrossCheck (CC, top row) and StudentLife (SL, bottom row) data. The height of each bar represents the EMA response, where the specific

response is listed on the x-axis under that bar. On the bottom, a “�” indicates whether there were significant (Mann-Whitney U test, two-sided, α = 0.05)

differences between CrossCheck and StudentLife EMA distributions, with rank-biserial correlation (RBC) values listing the magnitude of these differences.

https://doi.org/10.1371/journal.pone.0266516.g004

Table 6. Sensitivity analysis of predictive models using different training datasets.

EMA LOSO-CV Data ΔMAEBC ΔMAEBS ΔMAESC ΔMAECS ΔMAEBC\SC ΔMAEBS\CS

Without Benjamini–Hochberg correction (α = 0.05)�

Sleep CrossCheck 67 (16) 24 (6) 19 (4) 18 (4) 2 (0) 0 (0)

Sleep StudentLife 35 (8) 19 (4) 46 (11) 44 (10) 1 (0) 0 (0)

Stress CrossCheck 86 (20) 28 (6) 21 (5) 18 (4) 0 (0) 0 (0)

Stress StudentLife 16 (4) 9 (2) 4 (1) 7 (2) 0 (0) 0 (0)

With Benjamini–Hochberg correction (FDR = 25%)

Sleep CrossCheck 29 (7) 0 (0) 11 (3) 2 (0) 1 (0) 0 (0)

Sleep StudentLife 14 (3) 0 (0) 29 (7) 0 (0) 0 (0) 0 (0)

Stress CrossCheck 60 (14) 0 (0) 6 (1) 0 (0) 0 (0) 0 (0)

Stress StudentLife 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Values are listed as “number (%) of significant models”, and are shown without and with using a Benjamini–Hochberg correction to correct for a false discovery rate

(FDR) of 25% [50]. 432 total hyperparameter combinations were tested per training dataset and ecological momentary assessment (EMA). Training data could either be:

“B” a baseline model predicting the mean training data EMA value, “C” the combined data, or “S’’ single-study data. Alternative hypotheses were tested following

ΔMAEij = MAEi-MAEj >0. The last two columns show models where the intersection was significant: ΔMAEij\xy = ΔMAEij significant and ΔMAExy significant. All

significance tests were performed using a Rosner test, a non-parametric Wilcoxon signed-rank test (one-sided) that accounts for within-cluster (participant) rank

variation [51]. EMA: Ecological momentary assessment; LOSO-CV: Leave-one-subject-out cross-validation; MAE: Mean absolute error.

https://doi.org/10.1371/journal.pone.0266516.t006
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Fig 5. Sensitivity analysis reveals the combined versus single-study data is more likely to be predictive. The left y-axis describes the ΔMAE = MAESingle-

MAECombined against the sorted distribution percentiles (x-axis). The thick green solid line represents the ΔMAE percentiles, and the dashed black intersection

lines show the percentile value (x-axis) where ΔMAE = 0. The right y-axis describes the actual MAE for the combined (blue solid line), and single-study (dashed

orange line) data at each percentile. The baseline MAE, or error for a model predicting the average of the training data, is described by the dotted horizontal red

line. Wilcoxon signed-rank test (one-sided) statistics (W), p-values, and rank-biserial correlations (RBCs) are included for models where across

hyperparameters, using combined data significantly (α = 0.05) outperformed using single-study data (one-sided test). Shaded areas represent 95% confidence

intervals around the mean. EMA: Ecological momentary assessment.

https://doi.org/10.1371/journal.pone.0266516.g005
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Personalization not guaranteed to improve model performance

We explored if local personalization to align training and held-out feature distributions

improved model performance. Fig 6A shows that constraining the number of neighbors

resulted in more-aligned training and validation participant distributions (decreased Proxy-A

distance). Despite increased alignment, including more neighbors generally decreased the

model MAE (Fig 6B) across symptoms and datasets. Personalization with 5 or 10 neighbors

outperformed CrossCheck stress models trained with the entire dataset.

Oversampling imbalanced EMA values increases sensitivity, reduces

specificity

We used the synthetic minority oversampling technique (SMOTE) to oversample minority

EMA values and equalize value representation in each training dataset. Fig 7 shows the MAE

significantly increased using SMOTE across EMAs and datasets. Regression models often out-

put the lowest MAE by predicting the training data mean [2]. We analyzed if SMOTE

improved LOSO-CV performance by transforming the regressions into a binary classification

problem, coding the two most severe symptom responses for each EMA with a “1”, and the

other responses with a “0”. Fig 7 compares the sensitivity, specificity, and positive predictive

value (PPV) of using/not using SMOTE. Metric distributions across hyperparameters were

non-normally distributed (Shapiro-Wilk p<0.05). A paired Wilcoxon signed-rank test (one-

sided) found that the sensitivity was significantly greater (α = 0.05) using SMOTE across all

EMAs and datasets. SMOTE significantly increased the PPV for predicting stress, and margin-

ally (α = 0.10) increased the PPV for predicting sleep across datasets. Using SMOTE signifi-

cantly decreased the specificity across all EMAs and datasets.

Discussion

We present a first-of-a-kind analysis combining data across longitudinal mobile sensing stud-

ies to predict mental health symptoms. We aligned calculated behavioral features and symp-

tom self-reports between datasets, and conducted a sensitivity analysis to quantify the

expected gain in model performance across hyperparameters. Prior studies calculated a variety

of sensor features summarizing different types of information (e.g. summary statistics, circa-

dian rhythms) [3,5,15,44]. The CrossCheck public data included calculated daily summary

Table 7. Uncovering the association between distributional distance (ΔPAD) and model performance (ΔMAE).

βGEE (95% CI) pGEE βLMM (95% CI) pLMM

ΔPAD 0.07 (0.02 to 0.12) 0.004 0.07 (0.02 to 0.12) 0.007

EMA (Sleep/Stress) 0.01 (-0.01 to 0.02) 0.475 0.01 (0.00 to 0.01) 0.222

neighbors = 10 0.01 (0.00 to 0.02) 0.162 0.01 (-0.01 to 0.02) 0.191

neighbors = 50 0.01 (-0.01 to 0.02) 0.502 0.01 (-0.01 to 0.02) 0.430

neighbors = 100 0.01 (-0.01 to 0.03) 0.427 0.01 (-0.01 to 0.02) 0.331

neighbors = 500 0.01 (-0.01 to 0.03) 0.372 0.01 (-0.01 to 0.02) 0.293

neighbors = All 0.00 (-0.01 to 0.02) 0.535 0.00 (-0.01 to 0.02) 0.562

constant term 0.00 (-0.02 to 0.01) 0.793 0.00 (-0.01 to 0.01) 0.762

Generalized estimating equations (GEE) and linear mixed-effect model (LMM) results estimating the association between the change in Proxy-A distance

(ΔPAD = PADSingle-PADCombined) and change in mean absolute error (ΔMAE = MAESingle-MAECombined). Coefficients (β) are displayed by the mean (95% Confidence

Interval) with significance levels (p). We controlled for the ecological momentary assessment (EMA) predicted (sleep versus stress), and the number of neighbors used

for model personalization.

https://doi.org/10.1371/journal.pone.0266516.t007
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features, and StudentLife close-to-raw sensor data, which allowed us to calculate correspond-

ing CrossCheck features from StudentLife data. While publicly sharing close-to-raw sensor

data enables data alignment, it also raises privacy concerns. For example, the StudentLife data

contained GPS location, which could be paired with publicly available geotagged identifying

information for within dataset re-identification [53]. Data sharing may enable future work to

continue to assess model generalizability, but governance suggesting data de-identification

standards and access controls is needed to ensure appropriate data reuse [54].

Outcome symptom measures were less easy to align across studies. This is not surprising;

clinical studies intentionally measure symptoms of a specific serious mental illness (SMI),

Fig 6. Personalization increases training and held-out data alignment, but is not guaranteed to improve prediction performance. (A) Effects of

personalization by changing the number of neighbors (x-axis) used for model training on the feature distribution alignment between training and leave-one-

subject-out cross-validation (LOSO-CV) participants (Proxy-A distance, y-axis). (B) Effects of changing the number of neighbors (x-axis) during model

training on the model mean absolute error (MAE, y-axis). On all plots, each point is the mean Proxy-A distance (A) or MAE (B) across hyperparameters, and

error bars are 95% confidence intervals around the mean. Each plot is split by the training data used (combined versus single-study), and plots are specific to

the LOSO-CV result for a study (CrossCheck/StudentLife) and EMA (Sleep/Stress).

https://doi.org/10.1371/journal.pone.0266516.g006
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while non-clinical studies collect measures on more prevalent symptoms across the general

population (e.g. depression, stress) [3,5,17,20]. That being said, symptoms of depression are

symptoms of SMIs, including schizophrenia [55]. In this analysis, alignment of shared symp-

toms across studies was difficult, as each study used a different EMA symptom questionnaire

battery [3,4]. The international mental health research community has encouraged agencies to

require standardized outcome measures (e.g. PHQ-9) within funded research, but suggested

measures, due to their length, may be arduous to frequently self-report or are intended to

assess symptoms at longer time-scales, misaligned with the opportunity of mobile sensing for

frequent assessment [56]. Developing a standardized battery of in-the-moment symptom mea-

sures for continuous remote symptom assessment studies would advance research on model

generalizability.

Sensitivity analyses revealed that the combined data were more likely to improve EMA pre-

diction (Fig 5) compared to single-study data, and were more likely to be predictive (Table 6)

over the baseline models. Machine learning models are costly to train, specifically with exten-

sive hyperparameter tuning [57]. Our results showed that combining mobile sensing datasets

may offer a more efficient pathway from model building to deployment, defining efficiency as

the number of hyperparameters searched to identify a predictive model. Despite this efficiency

gain, optimal MAE values were similar using single-study versus combined data. Thus, as

other research shows, we cannot naively expect more data to optimize performance [58].

Future mobile sensing research could experiment with other data alignment methods to

understand if/when performance gains may occur [59].

Fig 7. SMOTE increases sensitivity, positive predictive value, but reduces specificity and increases mean absolute error. SMOTE (see legends)

oversampled under-represented ecological momentary assessment (EMA) values. The height of each bar is the mean value of the metric described on the x-axis

across hyperparameters. Error bars are 95% confidence intervals around the mean. Plots are specific to the leave-one-subject-out cross-validation (LOSO-CV)

result for a study (CrossCheck/StudentLife) and ecological momentary assessment (EMA) (Sleep/Stress). The specificity, sensitivity, and positive predictive

value (PPV) were calculated by transforming regression results into a classification problem by labeling the two most severe symptom classes in each EMA with

a “1” and other symptoms as “0”. Otherwise, the plots analyzed the regression mean absolute error (MAE). “�” indicates p<0.05, and “✝” indicates p<0.10, for a

Wilcoxon signed-rank test (one-sided) exploring differences using SMOTE/not using SMOTE across hyperparameter combinations.

https://doi.org/10.1371/journal.pone.0266516.g007
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Reducing the PAD, by using combined versus single-study data for model training, signifi-

cantly reduced the model MAE, implying that model performance improved when the com-

bined data had greater alignment with validation data compared to single-study data (Table 7).

The transfer learning subfield of domain adaptation offers a variety of approaches to continue

this line of research by aligning data collected from heterogeneous sources for the same predic-

tion task [35,46]. Domain adaptation approaches could be used for cross-dataset prediction to

align feature distributions across participants, or datasets. Another transfer learning approach

often used in remote mental health symptom assessment literature, called multitask learning,

treats prediction tasks within heterogeneous study datasets as separate-but-related tasks [60].

The prediction of each study participant’s symptoms, or cluster of participants that share

behavior-mental health relationships, is defined as a separate prediction task [41,44,45]. Partic-

ipants unseen during model training must then be matched to a cluster for prediction, which

is difficult when minimal to no mobile sensing or symptom data has been collected for that

participant. Future work should focus on how domain adaptation and/or multitask learning

can be leveraged for accurate modeling in datasets with increased sources (e.g. population,

device) of heterogeneity, working to minimize the anticipated data collection burden on

participants.

Our results offer a clue to how transfer learning may be applied to improve model perfor-

mance. Specifically, we found that personalization by aligning the behavioral feature space

alone (Fig 6A) did not always improve model performance (Fig 6B). The lack of performance

gain despite better feature alignment highlights that behavior-mental health relationships

across individuals may vary. This corresponds with clinical literature highlighting the hetero-

geneous presentation of mental health symptoms across individuals, even within the same dis-

order [26,61]. Understanding how symptom heterogeneity manifests within behavioral mobile

sensing features may be essential for more-accurate prediction. Our results point future work

towards modeling approaches that align both features and outcome symptoms when designing

prediction tasks.

We used SMOTE to oversample minority EMA values representing more severe mental

health symptoms. Prior work shows that prediction models underpredict severe mental health

symptoms [2]. From a classification perspective, models predicting extreme symptom changes

often result in low sensitivity, but high specificity [5,13]. Similarly, we found SMOTE

improved model sensitivity and PPV, but reduced specificity (Fig 7). While these results may

be obvious—biasing the training data towards a specific outcome likely improves prediction of

the oversampled outcome—to the best of our knowledge, the results and implications of using

oversampling techniques for longitudinal mental health symptom prediction have not been

discussed in the literature, and oversampling may be useful despite the specificity decrease.

Alert systems, triggering interventions in response to predicted symptom changes, could

account for higher false positives through low friction responses, for example, a patient reach-

out by a care manager [5]. Lower specificity is less problematic than lower sensitivity, the latter

resulting in undetected patients in need of care. Through this frame, oversampling, and data

augmentation more broadly, could be beneficial [29].

This research implies that previous de-identified mobile sensing study data can potentially

be deployed to predict symptoms across multiple populations. In-practice, clinicians may be

able to reuse models pretrained on external populations to predict symptoms within their own

patients, though future research should explore the amount of within-population data needed

for accurate prediction. Reuse is particularly useful when deploying models in populations typ-

ically underrepresented in mobile sensing studies, including elderly or less-affluent communi-

ties [27]. This research does not imply that combining heterogeneous data improves model

performance compared to training a machine learning model on a larger homogenous sample.
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In fact, this research implies the opposite. The decrease in PAD after combining datasets

implies that the larger combined training data used in this paper was more representative of

out-of-sample participants. Researchers should continue to test models across more diverse

datasets to understand when combining data improves or degrades model performance.

Model performance can degrade if the combined populations are too dissimilar—known as

negative transfer in the machine learning literature [62].

This study had limitations. First, demographic data was not reported in either public data-

set, and we could not assess prediction equity across demographic subpopulations. Both stud-

ies were small, and individual study populations were relatively homogenous. A number of

potentially useful data types (audio amplitude, bluetooth, call/text logs, light, phone charge,

WiFi location) were misaligned across datasets, and not included as features. Future work can

explore more complex modeling techniques to include both aligned and misaligned features

across datasets for prediction. Finally, the StudentLife and CrossCheck studies were conducted

by a similar research collaboration, implying that the studies’ design may be similar. As mobile

sensing studies across different research groups become publicly available, more diverse data-

sets can be combined to further assess generalizability.

In conclusion, we found that machine learning models trained across longitudinal mobile

sensing study datasets may generalize, and provide a more efficient method to build predictive

models. By assessing generalizability, we move the field closer to deploying remote, longitudi-

nal mental health symptom assessment systems.
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